State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina, 27606, USA.
J Integr Plant Biol. 2023 Jul;65(7):1734-1752. doi: 10.1111/jipb.13480. Epub 2023 May 12.
Although seed weight has increased following domestication from wild soybean (Glycine soja) to cultivated soybean (Glycine max), the genetic basis underlying this change is unclear. Using mapping populations derived from chromosome segment substitution lines of wild soybean, we identified SW16.1 as the causative gene underlying a major quantitative trait locus controlling seed weight. SW16.1 encodes a nucleus-localized LIM domain-containing protein. Importantly, the GsSW16.1 allele from wild soybean accession N24852 had a negative effect on seed weight, whereas the GmSW16.1 allele from cultivar NN1138-2 had a positive effect. Gene expression network analysis, reverse-transcription quantitative polymerase chain reaction, and promoter-luciferase reporter transient expression assays suggested that SW16.1 regulates the transcription of MT4, a positive regulator of seed weight. The natural variations in SW16.1 and other known seed weight genes were analyzed in soybean germplasm. The SW16.1 polymorphism was associated with seed weight in 247 soybean accessions, showing much higher frequency of positive-effect alleles in cultivated soybean than in wild soybean. Interestingly, gene allele matrix analysis of the known seed weight genes revealed that G. max has lost 38.5% of the G. soja alleles and that most of the lost alleles had negative effects on seed weight. Our results suggest that eliminating negative alleles from G. soja led to a higher frequency of positive alleles and changed genetic backgrounds in G. max, which contributed to larger seeds in cultivated soybean after domestication from wild soybean. Our findings provide new insights regarding soybean domestication and should assist current soybean breeding programs.
尽管从野生大豆(Glycine soja)驯化到栽培大豆(Glycine max)后种子重量增加了,但这种变化的遗传基础尚不清楚。利用来自野生大豆染色体片段替换系的作图群体,我们鉴定出 SW16.1 是控制种子重量的主要数量性状位点的候选基因。SW16.1 编码一个核定位的 LIM 结构域蛋白。重要的是,来自野生大豆 N24852 品系的 GsSW16.1 等位基因对种子重量有负面影响,而来自栽培品种 NN1138-2 的 GmSW16.1 等位基因则有正面影响。基因表达网络分析、反转录定量聚合酶链反应和启动子-荧光素酶报告瞬时表达试验表明,SW16.1 调节 MT4 的转录,MT4 是种子重量的正调控因子。对大豆种质资源中的 SW16.1 和其他已知种子重量基因进行了自然变异分析。在 247 个大豆品系中分析了 SW16.1 多态性与种子重量的关系,发现栽培大豆中 SW16.1 有利等位基因的频率明显高于野生大豆。有趣的是,对已知种子重量基因的基因等位基因矩阵分析表明,G. max 失去了 38.5%的 G. soja 等位基因,而且大多数丢失的等位基因对种子重量有负面影响。我们的研究结果表明,从 G. soja 中消除负等位基因导致了 G. max 中有利等位基因的更高频率和遗传背景的改变,这有助于从野生大豆驯化到栽培大豆后种子更大。我们的研究结果为大豆驯化提供了新的见解,应该有助于当前的大豆育种计划。