Suppr超能文献

受活化羧酸脱羧作用驱动的耗散系统。

Dissipative Systems Driven by the Decarboxylation of Activated Carboxylic Acids.

机构信息

Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185 Rome, Italy.

出版信息

Acc Chem Res. 2023 Apr 4;56(7):889-899. doi: 10.1021/acs.accounts.3c00047. Epub 2023 Mar 14.

Abstract

ConspectusThe achievement of artificial systems capable of being maintained in out-of-equilibrium states featuring functional properties is a main goal of current chemical research. Absorption of electromagnetic radiation or consumption of a chemical species (a "chemical fuel") are the two strategies typically employed to reach such out-of-equilibrium states, which have to persist as long as one of the above stimuli is present. For this reason such systems are often referred to as "dissipative systems". In the simplest scheme, the dissipative system is initially found in a resting, equilibrium state. The addition of a chemical fuel causes the system to shift to an out-of-equilibrium state. When the fuel is exhausted, the system reverts to the initial, equilibrium state. Thus, from a mechanistic standpoint, the dissipative system turns out to be a catalyst for the fuel consumption. It has to be noted that, although very simple, this scheme implies the chance to temporally control the dissipative system. In principle, modulating the nature and/or the amount of the chemical fuel added, one can have full control of the time spent by the system in the out-of-equilibrium state.In 2016, we found that 2-cyano-2-phenylpropanoic acid (), whose decarboxylation proceeds smoothly under mild basic conditions, could be used as a chemical fuel to drive the back and forth motion of a catenane-based molecular switch. The acid donates a proton to the catenane that passes from the neutral state A to the transient protonated state B. Decarboxylation of the resulting carboxylate (cb), generates a carbanion, which, being a strong base, retakes the proton from the protonated catenane that, consequently, returns to the initial state A. The larger the amount of the added fuel, the longer the time spent by the catenane in the transient, out-of-equilibrium state. Since then, acid and other activated carboxylic acids (ACAs) have been used to drive the operation of a large number of dissipative systems based on the acid-base reaction, from molecular machines to host-guest systems, from catalysts to smart materials, and so on. This Account illustrates such systems with the purpose to show the wide applicability of ACAs as chemical fuels. This generality is due to the simplicity of the idea underlying the operation principle of ACAs, which always translates into simple experimental requirements.

摘要

概述

能够在具有功能特性的非平衡状态下维持的人工系统的成就是当前化学研究的主要目标。吸收电磁辐射或消耗化学物质(“化学燃料”)是通常用于达到这种非平衡状态的两种策略,这种状态必须持续存在,只要存在上述刺激之一。出于这个原因,这样的系统通常被称为“耗散系统”。在最简单的方案中,耗散系统最初处于静止的平衡状态。添加化学燃料会导致系统转移到非平衡状态。当燃料耗尽时,系统恢复到初始的平衡状态。因此,从机械的角度来看,耗散系统是燃料消耗的催化剂。需要注意的是,尽管非常简单,但该方案意味着有机会暂时控制耗散系统。原则上,通过调节添加的化学燃料的性质和/或数量,可以完全控制系统在非平衡状态下花费的时间。

2016 年,我们发现 2-氰基-2-苯基丙酸(),其在温和的碱性条件下顺利脱羧,可以用作化学燃料,以驱动基于轮烷的分子开关的来回运动。该酸将质子捐赠给轮烷,轮烷从中性状态 A 转移到瞬态质子化状态 B。生成的羧酸盐(cb)的脱羧作用会产生碳负离子,碳负离子是一种强碱,会从质子化的轮烷中夺回质子,质子化的轮烷随后回到初始状态 A。添加的燃料越多,轮烷在瞬态非平衡状态下停留的时间就越长。从那时起,酸和其他活化羧酸(ACAs)已被用于驱动基于酸碱反应的大量耗散系统的运行,从分子机器到主体-客体系统,从催化剂到智能材料等等。本说明通过说明此类系统来说明 ACAs 作为化学燃料的广泛适用性。这种通用性归因于 ACAs 操作原理所基于的思想的简单性,这始终转化为简单的实验要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cba3/10077594/b68ee15227aa/ar3c00047_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验