Department of Chemistry, University of Manchester, Manchester, UK.
Nat Chem. 2022 Jul;14(7):728-738. doi: 10.1038/s41557-022-00970-9. Epub 2022 Jul 1.
Chemical reaction networks that transform out-of-equilibrium 'fuel' to 'waste' are the engines that power the biomolecular machinery of the cell. Inspired by such systems, autonomous artificial molecular machinery is being developed that functions by catalysing the decomposition of chemical fuels, exploiting kinetic asymmetry to harness energy released from the fuel-to-waste reaction to drive non-equilibrium structures and dynamics. Different aspects of chemical fuels profoundly influence their ability to power molecular machines. Here we consider the structure and properties of the fuels that biology has evolved and compare their features with those of the rudimentary synthetic chemical fuels that have so far been used to drive autonomous non-equilibrium molecular-level dynamics. We identify desirable, but context-specific, traits for chemical fuels together with challenges and opportunities for the design and invention of new chemical fuels to power synthetic molecular machinery and other dissipative nanoscale processes.
将非平衡“燃料”转化为“废物”的化学反应网络是为细胞的生物分子机器提供动力的引擎。受此类系统的启发,正在开发自主式人工分子机械,其通过催化化学燃料的分解来发挥作用,利用动力学不对称性来利用燃料到废物反应释放的能量来驱动非平衡结构和动力学。化学燃料的不同方面深刻影响其为分子机器提供动力的能力。在这里,我们考虑了生物学已经进化出的燃料的结构和性质,并将它们的特征与迄今为止用于驱动自主非平衡分子级动力学的基本合成化学燃料的特征进行了比较。我们确定了化学燃料的可取但特定于上下文的特征,以及为合成分子机械和其他耗散纳米级过程设计和发明新型化学燃料的挑战和机遇。