Suppr超能文献

物上纳米转移:从刚性到可拉伸纳米光子器件

Nanotransfer-on-Things: From Rigid to Stretchable Nanophotonic Devices.

作者信息

Ahn Junseong, Gu Jimin, Jeong Yongrok, Ha Ji-Hwan, Ko Jiwoo, Kang Byeongmin, Hwang Soon Hyoung, Park Jaeho, Jeon Sohee, Kim Hwi, Jeong Jun-Ho, Park Inkyu

机构信息

Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea.

出版信息

ACS Nano. 2023 Mar 28;17(6):5935-5942. doi: 10.1021/acsnano.3c00025. Epub 2023 Mar 14.

Abstract

The growing demand for nanophotonic devices has driven the advancement of nanotransfer printing (nTP) technology. Currently, the scope of nTP is limited to certain materials and substrates owing to the temperature, pressure, and chemical bonding requirements. In this study, we developed a universal nTP technique utilizing covalent bonding-based adhesives to improve the adhesion between the target material and substrate. Additionally, the technique employed plasma-based selective etching to weaken the adhesion between the mold and target material, thereby enabling the reliable modulation of the relative adhesion forces, regardless of the material or substrate. The technique was evaluated by printing four optical materials on nine substrates, including rigid, flexible, and stretchable substrates. Finally, its applicability was demonstrated by fabricating a ring hologram, a flexible plasmonic color filter, and extraordinary optical transmission-based strain sensors. The high accuracy and reliability of the proposed nTP method were verified by the performance of nanophotonic devices that closely matched numerical simulation results.

摘要

对纳米光子器件不断增长的需求推动了纳米转移印刷(nTP)技术的进步。目前,由于温度、压力和化学键合要求,nTP的范围仅限于某些材料和基板。在本研究中,我们开发了一种通用的nTP技术,利用基于共价键的粘合剂来改善目标材料与基板之间的粘附力。此外,该技术采用基于等离子体的选择性蚀刻来削弱模具与目标材料之间的粘附力,从而能够可靠地调节相对粘附力,而不管材料或基板如何。通过在包括刚性、柔性和可拉伸基板在内的九种基板上印刷四种光学材料对该技术进行了评估。最后,通过制造环形全息图、柔性等离子体滤色器和基于超常光学传输的应变传感器证明了其适用性。所提出的nTP方法的高精度和可靠性通过与数值模拟结果紧密匹配的纳米光子器件的性能得到了验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验