Suppr超能文献

通过去细胞支架和同时施加循环张应力和剪应力实现仿生血管组织工程。

Biomimetic vascular tissue engineering by decellularized scaffold and concurrent cyclic tensile and shear stresses.

机构信息

Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.

National Cell Bank of Iran, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, 1316943551, Iran.

出版信息

J Mater Sci Mater Med. 2023 Mar 14;34(3):12. doi: 10.1007/s10856-023-06716-4.

Abstract

Decellularization by chemical approaches has harmful effects on extracellular matrix (ECM) proteins, and damages lots of functional peptides and biomolecules present in the ultrastructure. In this study, we employed a combination of chemical and physical decellularization methods to overcome these disadvantages. The induced osmotic pressure by hypertonic/hypotonic solutions dissociated and removed most of cellular membranes significantly without any detergent or chemical agent. In total, 0.025% trypsin solution was found adequate to remove the remaining debrides, and ultimately 1% Triton X-100 was utilized for final cleansing. In addition, conducting all the decellularization processes at 4 °C yielded an ECM with least damages in the ultrastructure which could be inferred by close mechanical strength and swelling ratio to the native vessel, and high quality and quantity of cell attachment, migration and proliferation which were examined by optical microscopy and scanning electron microscopy (SEM) of the histology samples. Moreover, the obtained biological scaffold (BS) had no cytotoxicity according to the MTT assay, and this scaffold is storable at -20 °C. Employing bioreactor for concurrent cyclic tensile and shear stresses improved the cell migration into pores of the BS and made the cells and the scaffold compact in analogous to native tissue. As opening angle test showed by decellularizing of the blood vessel, the residual stress dropped significantly which revealed the role of cells in the amount of induced stress in the structure. However, intact and healthy ECM explicitly recovered upon recellularization and beat the initial residual stress of the native tissue. The tensile test of the blood vessels in longitudinal and radial directions revealed orthotropic behavior which can be explained by collagen fibers direction in the ECM. Furthermore, by the three regions of the stress-strain curve can be elucidated the roles of cells, elastin and collagen fibers in mechanical behavior of the vascular tissues.

摘要

化学方法的去细胞化对细胞外基质 (ECM) 蛋白有有害影响,并破坏了超微结构中存在的许多功能肽和生物分子。在这项研究中,我们采用了化学和物理去细胞化方法的组合来克服这些缺点。高渗/低渗溶液产生的诱导渗透压显著分离并去除了大部分细胞膜,而无需任何洗涤剂或化学试剂。总的来说,发现 0.025%的胰蛋白酶溶液足以去除剩余的碎片,最终 1%的 Triton X-100 用于最终清洗。此外,在 4°C 下进行所有去细胞化过程可使 ECM 在超微结构中受到最小的损伤,这可以通过接近机械强度和肿胀率与天然血管、高质量和数量的细胞附着、迁移和增殖来推断,这些可以通过组织学样本的光学显微镜和扫描电子显微镜 (SEM) 来检查。此外,根据 MTT 测定,获得的生物支架 (BS) 没有细胞毒性,并且该支架可在-20°C 下储存。使用生物反应器同时施加循环拉伸和剪切应力可改善细胞向 BS 孔中的迁移,并使细胞和支架在类似于天然组织的情况下变得紧凑。如通过血管去细胞化进行的开角测试所示,残余应力显著下降,这表明细胞在结构中诱导的应力量中的作用。然而,在再细胞化后,完整健康的 ECM 明显恢复,并超过了天然组织的初始残余应力。血管在纵向和径向方向的拉伸测试显示出各向异性行为,这可以通过 ECM 中的胶原纤维方向来解释。此外,通过应力-应变曲线的三个区域可以阐明细胞、弹性蛋白和胶原纤维在血管组织力学行为中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b21/10014704/d9e7c29e4fad/10856_2023_6716_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验