Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel.
Department of Physics, University of Konstanz, Universitätstrasse 10, 78457 Konstanz, Germany.
Nano Lett. 2023 May 24;23(10):4669-4674. doi: 10.1021/acs.nanolett.3c00324. Epub 2023 Mar 14.
The positions of Abrikosov vortices have long been considered as means to encode classical information. Although it is possible to move individual vortices using local probes, the challenge of scalable on-chip vortex-control remains outstanding, especially when considering the demands of controlling multiple vortices. Realization of vortex logic requires means to shuttle vortices reliably between engineered pinning potentials, while concomitantly keeping all other vortices fixed. We demonstrate such capabilities using Nb loops patterned below a NbSe layer. SQUID-on-Tip (SOT) microscopy reveals that the loops localize vortices in designated sites to a precision better than 100 nm; they realize "push" and "pull" operations of vortices as far as 3 μm. Successive application of such operations shuttles a vortex between adjacent loops. Our results may be used as means to integrate vortices in future quantum circuitry. Strikingly, we demonstrate a winding operation, paving the way for future topological quantum computing and simulations.
阿布里科索夫涡旋的位置长期以来一直被认为是编码经典信息的手段。虽然可以使用局部探针移动单个涡旋,但在考虑控制多个涡旋的需求时,可扩展的片上涡旋控制仍然是一个挑战。实现涡旋逻辑需要可靠地在工程钉扎势之间摆渡涡旋,同时保持所有其他涡旋固定。我们使用图案化在 NbSe 层下方的 Nb 环展示了这种能力。超导量子干涉仪(SQUID-on-Tip,SOT)显微镜显示,这些环可以将涡旋精确定位在指定位置,精度优于 100nm;它们实现了最远 3μm 的“推”和“拉”操作。通过这种操作的连续应用,可以在相邻的环之间摆渡一个涡旋。我们的结果可以用作未来量子电路中集成涡旋的手段。值得注意的是,我们展示了一种缠绕操作,为未来的拓扑量子计算和模拟铺平了道路。