Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA.
Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA.
Mol Cell. 2023 Apr 6;83(7):1153-1164.e4. doi: 10.1016/j.molcel.2023.02.017. Epub 2023 Mar 13.
Genomic DNA is a crowded track where motor proteins frequently collide. It remains underexplored whether these collisions carry physiological function. In this work, we develop a single-molecule assay to visualize the trafficking of individual E. coli RNA polymerases (RNAPs) on DNA. Based on transcriptomic data, we hypothesize that RNAP collisions drive bidirectional transcription termination of convergent gene pairs. Single-molecule results show that the head-on collision between two converging RNAPs is necessary to prevent transcriptional readthrough but insufficient to release the RNAPs from the DNA. Remarkably, co-directional collision of a trailing RNAP into the head-on collided complex dramatically increases the termination efficiency. Furthermore, stem-loop structures formed in the nascent RNA are required for collisions to occur at well-defined positions between convergent genes. These findings suggest that physical collisions between RNAPs furnish a mechanism for transcription termination and that programmed genomic conflicts can be exploited to co-regulate the expression of multiple genes.
基因组 DNA 是一个拥挤的轨道,其中的马达蛋白经常发生碰撞。这些碰撞是否具有生理功能仍未得到充分研究。在这项工作中,我们开发了一种单分子测定法,以可视化单个大肠杆菌 RNA 聚合酶 (RNAP) 在 DNA 上的运输。基于转录组数据,我们假设 RNAP 碰撞驱动了趋同基因对的双向转录终止。单分子结果表明,两个趋同的 RNAP 之间的正面碰撞对于防止转录通读是必要的,但不足以将 RNAP 从 DNA 上释放。值得注意的是,尾随的 RNAP 与正面碰撞复合物的共向碰撞极大地提高了终止效率。此外,新生 RNA 中形成的茎环结构对于在趋同基因之间的明确定位发生碰撞是必需的。这些发现表明,RNAP 之间的物理碰撞提供了一种转录终止的机制,并且可以利用编程的基因组冲突来共同调节多个基因的表达。