Rheumatology unit, Bnai-Zion Medical Center, Technion-Israel Institute of Technology, Haifa, Israel.
Rheumatology unit, Bnai-Zion Medical Center, Technion-Israel Institute of Technology, Haifa, Israel.
Autoimmun Rev. 2023 Jun;22(6):103314. doi: 10.1016/j.autrev.2023.103314. Epub 2023 Mar 12.
Systemic sclerosis (SSc) is a rare and chronic autoimmune disease characterized by a pathogenic triad of immune dysregulation, vasculopathy, and progressive fibrosis. Clinical tools commonly used to assess patients, including the modified Rodnan skin score, difference between limited or diffuse forms of skin involvement, presence of lung, heart or kidney involvement, or of various autoantibodies, are important prognostic factors, but still fail to reflect the large heterogeneity of the disease. SSc treatment options are diverse, ranging from conventional drugs to autologous hematopoietic stem cell transplantation, and predicting response is challenging. Genome-wide technologies, such as high throughput microarray analyses and RNA sequencing, allow accurate, unbiased, and broad assessment of alterations in expression levels of multiple genes. In recent years, many studies have shown robust changes in the gene expression profiles of SSc patients compared to healthy controls, mainly in skin tissues and peripheral blood cells. The objective analysis of molecular patterns in SSc is a powerful tool that can further classify SSc patients with similar clinical phenotypes and help predict response to therapy. In this review, we describe the journey from the first discovery of differentially expressed genes to the identification of enriched pathways and intrinsic subsets identified in SSc, using machine learning algorithms. Finally, we discuss the use of these new tools to predict the efficacy of various treatments, including stem cell transplantation. We suggest that the use of RNA gene expression-based classifications according to molecular subsets may bring us one step closer to precision medicine in Systemic Sclerosis.
系统性硬化症(SSc)是一种罕见的慢性自身免疫性疾病,其特征为免疫失调、血管病变和进行性纤维化的致病三联征。临床上常用于评估患者的工具,包括改良的罗德南皮肤评分、局限性或弥漫性皮肤受累的差异、肺、心脏或肾脏受累的存在,或各种自身抗体,都是重要的预后因素,但仍未能反映出疾病的巨大异质性。SSc 的治疗选择多种多样,从传统药物到自体造血干细胞移植不等,预测反应具有挑战性。全基因组技术,如高通量微阵列分析和 RNA 测序,可准确、无偏地广泛评估多个基因表达水平的变化。近年来,许多研究表明,与健康对照组相比,SSc 患者的基因表达谱存在明显变化,主要在皮肤组织和外周血细胞中。对 SSc 中分子模式的客观分析是一种强大的工具,可以进一步对具有相似临床表型的 SSc 患者进行分类,并有助于预测对治疗的反应。在这篇综述中,我们描述了从第一个差异表达基因的发现到使用机器学习算法识别 SSc 中富集的途径和内在亚群的过程。最后,我们讨论了这些新工具在预测各种治疗方法(包括干细胞移植)疗效中的应用。我们认为,根据分子亚群进行基于 RNA 基因表达的分类可能使我们在系统性硬化症的精准医学方面更进了一步。