CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
College of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
Angew Chem Int Ed Engl. 2023 May 22;62(22):e202217702. doi: 10.1002/anie.202217702. Epub 2023 Apr 12.
The dearth of technologies that allow gene modulation and therapy with high spatiotemporal precision remains a bottleneck in biomedical research and applications. Here we present a near-infrared (NIR) light-controlled nanosystem that allows spatiotemporally controlled regulation of gene expression and thus combinational tumor therapy. The nanosystem is built by engineering of an enzyme-activatable antisense oligonucleotide and further combination with an upconversion nanoparticle-based photodynamic system and a mitochondria localization signal. The system relies on photodynamic effect-induced translocation of a DNA repair enzyme from nucleus into mitochondria, which enables spatially selective gene regulation via enzymatic reactions. We demonstrate that the NIR light-induced mitochondrial photodamage and gene regulation enable enhanced antitumor effect. Our approach may enable the specific gene regulation and tumor treatment with high precision both spatially and temporally.
目前,缺乏能够实现高时空精度基因调控和治疗的技术,这仍然是生物医学研究和应用的一个瓶颈。在这里,我们提出了一种近红外(NIR)光控纳米系统,该系统可以实现时空控制的基因表达调控,从而实现联合肿瘤治疗。该纳米系统通过酶激活反义寡核苷酸的工程化,并进一步与基于上转换纳米粒子的光动力系统和线粒体定位信号组合构建而成。该系统依赖于光动力效应诱导的 DNA 修复酶从细胞核到线粒体的易位,从而通过酶反应实现空间选择性基因调控。我们证明,NIR 光诱导的线粒体光损伤和基因调控可以增强抗肿瘤效果。我们的方法可以实现高精度的时空特异性基因调控和肿瘤治疗。