Suppr超能文献

基于上转换杂化纳米系统的时空控制基因调控联合肿瘤治疗策略。

A Spatiotemporally Controlled Gene-Regulation Strategy for Combined Tumor Therapy Based on Upconversion Hybrid Nanosystem.

机构信息

Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, 9 Beiguan Street, Beijing, 101149, China.

College of Science, Minzu University of China, 27 Zhongguancun South Avenue, Beijing, 100081, China.

出版信息

Adv Sci (Weinh). 2024 Oct;11(40):e2405640. doi: 10.1002/advs.202405640. Epub 2024 Aug 29.

Abstract

The lack of precise spatiotemporal gene modulation and therapy impedes progress in medical applications. Herein, a 980 nm near-infrared (NIR) light-controlled nanoplatform, namely URMT, is developed, which can allow spatiotemporally controlled photodynamic therapy and trigger the enzyme-activated gene expression regulation in tumors. URMT is constructed by engineering an enzyme-activatable antisense oligonucleotide, which combined with an upconversion nanoparticle (UCNP)-based photodynamic nanosystem, followed by the surface functionalization of triphenylphosphine (TPP), a mitochondria-targeting ligand. URMT allows for the 980 nm NIR light-activated generation of reactive oxygen species, which can induce the translocation of a DNA repair enzyme (namely apurinic/apyrimidinic endonuclease 1, APE1) from the nucleus to mitochondria. APE1 can recognize the basic apurinic/apyrimidinic (AP) sites in DNA double-strands and perform cleavage, thereby releasing the functional single-strands for gene regulation. Overall, an augmented antitumor effect is observed due to NIR light-controlled mitochondrial damage and enzyme-activated gene regulation. Altogether, the approach reported in this study offers high spatiotemporal precision and shows the potential to achieve precise and specific gene regulation for targeted tumor treatment.

摘要

缺乏精确的时空基因调控和治疗手段阻碍了医学应用的进展。在此,开发了一种 980nm 近红外(NIR)光控纳米平台,即 URMT,它可以实现时空控制的光动力疗法,并在肿瘤中触发酶激活的基因表达调控。URMT 通过工程化一种酶激活的反义寡核苷酸构建而成,该反义寡核苷酸与基于上转换纳米颗粒(UCNP)的光动力纳米系统结合,然后表面功能化三苯基膦(TPP),一种线粒体靶向配体。URMT 允许 980nm NIR 光激活生成活性氧,从而诱导 DNA 修复酶(即脱嘌呤/脱嘧啶内切酶 1,APE1)从核转移到线粒体。APE1 可以识别 DNA 双链中的基本无嘌呤/嘧啶(AP)位点并进行切割,从而释放用于基因调控的功能单链。总的来说,由于 NIR 光控线粒体损伤和酶激活基因调控,观察到增强的抗肿瘤效果。总之,本研究中报道的方法提供了高时空精度,并显示出实现针对肿瘤治疗的精确和特异性基因调控的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86dc/11515897/0916cf89cecb/ADVS-11-2405640-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验