Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076, Tübingen, Germany.
International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Institute of Neuroscience (ION), Chinese Academy of Sciences, Shanghai, China.
Sci Rep. 2023 Mar 14;13(1):4231. doi: 10.1038/s41598-023-31308-1.
The therapeutic use of noradrenergic drugs makes the evaluation of their effects on cognition of high priority. Norepinephrine (NE) is an important neuromodulator for a variety of cognitive processes and may importantly contribute to sleep-mediated memory consolidation. The NE transmission fluctuates with the behavioral and/or brain state and influences associated neural activity. Here, we assessed the effects of altered NE transmission after learning of a hippocampal-dependent task on neural activity and spatial memory in adult male rats. We administered clonidine (0.05 mg/kg, i.p.; n = 12 rats) or propranolol (10 mg/kg, i.p.; n = 11) after each of seven daily learning sessions on an 8-arm radial maze. Compared to the saline group (n = 9), the drug-treated rats showed lower learning rates. To assess the effects of drugs on cortical and hippocampal activity, we recorded prefrontal EEG and local field potentials from the CA1 subfield of the dorsal hippocampus for 2 h after each learning session or drug administration. Both drugs significantly reduced the number of hippocampal ripples for at least 2 h. An EEG-based sleep scoring revealed that clonidine made the sleep onset faster while prolonging quiet wakefulness. Propranolol increased active wakefulness at the expense of non-rapid eye movement (NREM) sleep. Clonidine reduced the occurrence of slow oscillations (SO) and sleep spindles during NREM sleep and altered the temporal coupling between SO and sleep spindles. Thus, pharmacological alteration of NE transmission produced a suboptimal brain state for memory consolidation. Our results suggest that the post-learning NE contributes to the efficiency of hippocampal-cortical communication underlying memory consolidation.
去甲肾上腺素能药物的治疗用途使其对认知的影响评估成为重中之重。去甲肾上腺素(NE)是各种认知过程的重要神经调节剂,可能对睡眠介导的记忆巩固起到重要作用。NE 传递随行为和/或大脑状态而波动,并影响相关的神经活动。在这里,我们评估了海马依赖性任务学习后改变 NE 传递对成年雄性大鼠的神经活动和空间记忆的影响。我们在 8 臂放射状迷宫上进行了 7 天的每日学习课程后,分别给每只大鼠注射可乐定(0.05mg/kg,腹腔内注射;n=12 只大鼠)或普萘洛尔(10mg/kg,腹腔内注射;n=11 只)。与盐水组(n=9)相比,药物处理组的学习速度较慢。为了评估药物对皮质和海马区活动的影响,我们在每次学习课程或药物给药后 2 小时内记录前额叶 EEG 和背侧海马 CA1 亚区的局部场电位。两种药物都显著减少了至少 2 小时的海马棘波数量。基于 EEG 的睡眠评分显示,可乐定使睡眠起始更快,而使安静清醒时间延长。普萘洛尔以牺牲非快速眼动(NREM)睡眠为代价增加了活跃清醒。可乐定减少了 NREM 睡眠期间的慢波(SO)和睡眠纺锤波的发生,并改变了 SO 和睡眠纺锤波之间的时间耦合。因此,NE 传递的药理学改变产生了不利于记忆巩固的次优大脑状态。我们的结果表明,学习后 NE 有助于记忆巩固的海马皮质通讯效率。