Laboratory for Complex Systems and Networks, Research Centre for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia.
Laboratory for Complex Systems and Networks, Research Centre for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Skopje, North Macedonia.
Biophys J. 2023 Apr 18;122(8):1470-1490. doi: 10.1016/j.bpj.2023.03.013. Epub 2023 Mar 13.
Despite the molecular evidence that a nearly linear steady-state current-voltage relationship in mammalian astrocytes reflects a total current resulting from more than one differentially regulated K conductance, detailed ordinary differential equation (ODE) models of membrane voltage V are still lacking. Various experimental results reporting altered rectification of the major Kir currents in glia, dominated by Kir4.1, have motivated us to develop a detailed model of V dynamics incorporating the weaker potassium K2P-TREK1 current in addition to Kir4.1, and study the stability of the resting state V. The main question is whether, with the loss of monotonicity in glial I-V curve resulting from altered Kir rectification, the nominal resting state V remains stable, and the cell retains the trivial, potassium electrode behavior with V after E. The minimal two-dimensional model of V near V showed that an N-shape deformed Kir I-V curve induces multistability of V in a model that incorporates K2P activation kinetics, and nonspecific K leak currents. More specifically, an asymmetrical, nonlinear decrease of outward Kir4.1 conductance, turning the channels into inward rectifiers, introduces instability of V. That happens through a robust bifurcation giving birth to a second, more depolarized stable resting state V > -10 mV. Realistic recordings from electrographic seizures were used to perturb the model. Simulations of the model perturbed by constant current through gap junctions and seizure-like discharges as local field potentials led to depolarization and switching of V between the two stable states, in a downstate-upstate manner. In the event of prolonged depolarizations near V, such catastrophic instability would affect all aspects of the glial function, from metabolic support to membrane transport, and practically all neuromodulatory roles assigned to glia.
尽管有分子证据表明,哺乳动物星形胶质细胞中的几乎线性稳态电流-电压关系反映了由不止一种差异调节的 K 电导产生的总电流,但仍缺乏详细的常微分方程 (ODE) 膜电压 V 模型。各种实验结果报告说,主要的 Kir 电流(由 Kir4.1 主导)在神经胶质中的整流作用发生了改变,这促使我们开发了一个包含较弱钾离子 K2P-TREK1 电流的 V 动力学详细模型,除了 Kir4.1 之外,还研究了静息状态 V 的稳定性。主要问题是,由于 Kir 整流作用的改变导致胶质细胞 I-V 曲线的单调性丧失,名义上的静息状态 V 是否仍然稳定,以及细胞在 E 后是否保留钾电极行为,即 V。V 附近的最小二维模型表明,Kir I-V 曲线的 N 形变形会导致包含 K2P 激活动力学和非特异性 K 泄漏电流的模型中 V 的多稳定性。更具体地说,向外 Kir4.1 电导的不对称、非线性减小会使通道变为内向整流,从而导致 V 的不稳定性。这种情况通过一个稳健的分岔产生第二个更去极化的稳定静息状态 V>-10 mV。使用来自电描记发作的实际记录来扰动模型。通过缝隙连接和癫痫样放电作为局部场电位对模型进行恒定电流的模拟会导致 V 在两个稳定状态之间去极化和切换,呈下状态-上状态方式。在 V 附近发生长时间的去极化的情况下,这种灾难性的不稳定性会影响胶质细胞功能的各个方面,从代谢支持到膜转运,以及实际上分配给胶质细胞的所有神经调制作用。