Suppr超能文献

首发未用药的重性抑郁障碍患者脑动态功能连接的异质性。

Heterogeneous brain dynamic functional connectivity patterns in first-episode drug-naive patients with major depressive disorder.

机构信息

School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China.

Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit, Peking University, Beijing, China.

出版信息

Hum Brain Mapp. 2023 Jun 1;44(8):3112-3122. doi: 10.1002/hbm.26266. Epub 2023 Mar 15.

Abstract

It remains challenging to identify depression accurately due to its biological heterogeneity. As people suffering from depression are associated with functional brain network alterations, we investigated subtypes of patients with first-episode drug-naive (FEDN) depression based on brain network characteristics. This study included data from 91 FEDN patients and 91 matched healthy individuals obtained from the International Big-Data Center for Depression Research. Twenty large-scale functional connectivity networks were computed using group information guided independent component analysis. A multivariate unsupervised normative modeling method was used to identify subtypes of FEDN and their associated networks, focusing on individual-level variability among the patients for quantifying deviations of their brain networks from the normative range. Two patient subtypes were identified with distinctive abnormal functional network patterns, consisting of 10 informative connectivity networks, including the default mode network and frontoparietal network. 16% of patients belonged to subtype I with larger extreme deviations from the normal range and shorter illness duration, while 84% belonged to subtype II with weaker extreme deviations and longer illness duration. Moreover, the structural changes in subtype II patients were more complex than the subtype I patients. Compared with healthy controls, both increased and decreased gray matter (GM) abnormalities were identified in widely distributed brain regions in subtype II patients. In contrast, most abnormalities were decreased GM in subtype I. The informative functional network connectivity patterns gleaned from the imaging data can facilitate the accurate identification of FEDN-MDD subtypes and their associated neurobiological heterogeneity.

摘要

由于其生物学异质性,准确识别抑郁症仍然具有挑战性。由于患有抑郁症的人存在功能性大脑网络改变,因此我们基于大脑网络特征研究了首发未经药物治疗(FEDN)抑郁症患者的亚型。这项研究纳入了来自抑郁症国际大数据研究中心的 91 名 FEDN 患者和 91 名匹配的健康个体的数据。使用基于群组信息的独立成分分析计算了 20 个大规模的功能连接网络。使用多变量无监督规范建模方法识别 FEDN 的亚型及其相关网络,重点关注患者个体水平的可变性,以量化其大脑网络与规范范围的偏差。确定了两种具有独特异常功能网络模式的患者亚型,包含 10 个信息连通性网络,包括默认模式网络和额顶网络。16%的患者属于亚型 I,其与正常范围的极端偏差较大,疾病持续时间较短,而 84%的患者属于亚型 II,其极端偏差较弱,疾病持续时间较长。此外,亚型 II 患者的结构变化比亚型 I 患者更为复杂。与健康对照组相比,在广泛分布的脑区中,亚型 II 患者存在灰质(GM)异常增加和减少。相比之下,在亚型 I 患者中,大多数异常是 GM 减少。从影像数据中提取的信息丰富的功能网络连通性模式有助于准确识别 FEDN-MDD 亚型及其相关的神经生物学异质性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43b9/10171501/eaa86e8d714c/HBM-44-3112-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验