Chen Tingting, Li Hongming, Zheng Hao, Chen Jintai, Fan Yong
Center for Biomedical Image Computing and Analytics, Philadelphia, PA 19104, USA.
Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
bioRxiv. 2024 Dec 21:2024.12.20.629773. doi: 10.1101/2024.12.20.629773.
Characterizing brain dynamic functional connectivity (dFC) patterns from functional Magnetic Resonance Imaging (fMRI) data is of paramount importance in neuroscience and medicine. Recently, many graph neural network (GNN) models, combined with transformers or recurrent neural networks (RNNs), have shown great potential for modeling the dFC patterns. However, these methods face challenges in effectively characterizing the modularity organization of brain networks and capturing varying dFC state patterns. To address these limitations, we propose dFCExpert, a novel method designed to learn robust representations of dFC patterns in fMRI data with modularity experts and state experts. Specifically, the modularity experts optimize multiple experts to characterize the brain modularity organization during graph feature learning process by combining GNN and mixture of experts (MoE), with each expert focusing on brain nodes within the same functional network module. The state experts aggregate temporal dFC features into a set of distinctive connectivity states using a soft prototype clustering method, providing insight into how these states support different brain activities or are differentially affected by brain disorders. Experiments on two large-scale fMRI datasets demonstrate the superiority of our method over existing alternatives. The learned dFC representations not only show improved interpretability but also hold promise for enhancing clinical diagnosis. The code can be accessed at MLDataAnalytics/dFCExpert on GitHub.
从功能磁共振成像(fMRI)数据中表征脑动态功能连接(dFC)模式在神经科学和医学中至关重要。最近,许多结合了变压器或循环神经网络(RNN)的图神经网络(GNN)模型在对dFC模式进行建模方面显示出了巨大潜力。然而,这些方法在有效表征脑网络的模块化组织和捕捉不同的dFC状态模式方面面临挑战。为了解决这些局限性,我们提出了dFCExpert,这是一种新颖的方法,旨在通过模块化专家和状态专家学习fMRI数据中dFC模式的稳健表示。具体而言,模块化专家通过结合GNN和专家混合(MoE)在图特征学习过程中优化多个专家来表征脑模块化组织,每个专家专注于同一功能网络模块内的脑节点。状态专家使用软原型聚类方法将时间dFC特征聚合为一组独特的连接状态,深入了解这些状态如何支持不同的脑活动或受到脑部疾病的不同影响。在两个大规模fMRI数据集上进行的实验证明了我们的方法优于现有替代方法。所学习的dFC表示不仅显示出更好的可解释性,而且有望增强临床诊断。代码可在GitHub上的MLDataAnalytics/dFCExpert获取。