Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 211189, China.
Small. 2023 Jun;19(24):e2300291. doi: 10.1002/smll.202300291. Epub 2023 Mar 15.
Synthesis of green ammonia (NH ) via electrolysis of nitric oxide (NO) is extraordinarily sustainable, but multielectron/proton-involved hydrogenation steps as well as low concentrations of NO can lead to poor activities and selectivities of electrocatalysts. Herein, it is reported that oxygen-defective TiO nanoarray supported on Ti plate (TiO /TP) behaves as an efficient catalyst for NO reduction to NH . In 0.2 m phosphate-buffered electrolyte, such TiO /TP shows competitive electrocatalytic NH synthesis activity with a maximum NH yield of 1233.2 µg h cm and Faradaic efficiency of 92.5%. Density functional theory calculations further thermodynamically faster NO deoxygenation and protonation processes on TiO (101) compared to perfect TiO (101). And the low energy barrier of 0.7 eV on TiO (101) for the potential-determining step further highlights the greatly improved intrinsic activity. In addition, a Zn-NO battery is fabricated with TiO /TP and Zn plate to obtain an NH yield of 241.7 µg h cm while providing a peak power density of 0.84 mW cm .
通过一氧化氮(NO)电解合成绿色氨(NH3)具有极高的可持续性,但多电子/质子加氢步骤以及低浓度的 NO 会导致电催化剂的活性和选择性较差。本文报道了氧缺陷 TiO 纳米阵列负载在钛板上(TiO2/TP)作为一种高效的催化剂,可将 NO 还原为 NH3。在 0.2 m 磷酸盐缓冲电解液中,这种 TiO2/TP 表现出与 NH3 合成竞争的电催化活性,最大 NH3 产率为 1233.2 µg h cm-2,法拉第效率为 92.5%。密度泛函理论计算进一步表明,与完美的 TiO2(101)相比,TiO2(101)上的 NO 脱氧和质子化过程在热力学上更快。并且在决定步骤上 TiO2(101)的低能垒为 0.7 eV,进一步突出了其大大提高的本征活性。此外,用 TiO2/TP 和锌板制备了 Zn-NO 电池,获得了 241.7 µg h cm-2 的 NH3 产率,同时提供了 0.84 mW cm-2 的峰值功率密度。