Suppr超能文献

构建具有肖特基接触的 Co@TiO 纳米阵列异质结构用于选择性电催化硝酸盐还原为氨。

Constructing Co@TiO Nanoarray Heterostructure with Schottky Contact for Selective Electrocatalytic Nitrate Reduction to Ammonia.

机构信息

Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China.

出版信息

Small. 2023 Apr;19(17):e2208036. doi: 10.1002/smll.202208036. Epub 2023 Jan 30.

Abstract

Electrochemical nitrate (NO ) reduction reaction (NO RR) is a potential sustainable route for large-scale ambient ammonia (NH ) synthesis and regulating the nitrogen cycle. However, as this reaction involves multi-electron transfer steps, it urgently needs efficient electrocatalysts on promoting NH  selectivity. Herein, a rational design of Co nanoparticles anchored on TiO  nanobelt array on titanium plate (Co@TiO /TP) is presented as a high-efficiency electrocatalyst for NO RR. Density theory calculations demonstrate that the constructed Schottky heterostructures coupling metallic Co with semiconductor TiO  develop a built-in electric field, which can accelerate the rate determining step and facilitate NO adsorption, ensuring the selective conversion to NH . Expectantly, the Co@TiO /TP electrocatalyst attains an excellent Faradaic efficiency of 96.7% and a high NH  yield of 800.0 µmol h  cm  under neutral solution. More importantly, Co@TiO /TP heterostructure catalyst also presents a remarkable stability in 50-h electrolysis test.

摘要

电化学硝酸盐(NO )还原反应(NO RR)是一种大规模环境氨(NH )合成和调节氮循环的潜在可持续途径。然而,由于该反应涉及多电子转移步骤,因此迫切需要能够有效促进 NH 选择性的电催化剂。在此,提出了一种在钛板上负载 Co 纳米颗粒的 TiO 纳米带阵列(Co@TiO /TP)的合理设计,作为一种高效的用于 NO RR 的电催化剂。密度理论计算表明,构建的肖特基异质结构将金属 Co 与半导体 TiO 耦合在一起,形成内置电场,从而可以加速速率决定步骤并促进 NO 的吸附,确保选择性转化为 NH 。值得期待的是,Co@TiO /TP 电催化剂在中性溶液中实现了高达 96.7%的优异法拉第效率和 800.0 μmol h cm 的高 NH 产率。更重要的是,Co@TiO /TP 异质结构催化剂在 50 小时的电解测试中也表现出了显著的稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验