State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China.
Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Provinc, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.
Small. 2023 Jun;19(25):e2301128. doi: 10.1002/smll.202301128. Epub 2023 Mar 15.
Electrochemical CO reduction reaction (CO RR), powered by renewable electricity, has attracted great attention for producing high value-added fuels and chemicals, as well as feasibly mitigating CO emission problem. Here, this work reports a facile hard template strategy to prepare the Ni@N-C catalyst with core-shell structure, where nickel nanoparticles (Ni NPs) are encapsulated by thin nitrogen-doped carbon shells (N-C shells). The Ni@N-C catalyst has demonstrated a promising industrial current density of 236.7 mA cm with the superb FE of 97% at -1.1 V versus RHE. Moreover, Ni@N-C can drive the reversible Zn-CO battery with the largest power density of 1.64 mW cm , and endure a tough cycling durability. These excellent performances are ascribed to the synergistic effect of Ni@N-C that Ni NPs can regulate the electronic microenvironment of N-doped carbon shells, which favor to enhance the CO adsorption capacity and the electron transfer capacity. Density functional theory calculations prove that the binding configuration of N-C located on the top of Ni slabs (Top-Ni@N-C) is the most thermodynamically stable and possess a lowest thermodynamic barrier for the formation of COOH and the desorption of CO. This work may pioneer a new method on seeking high-efficiency and worthwhile electrocatalysts for CO RR and Zn-CO battery.
电化学 CO 还原反应(CO RR),由可再生电力驱动,因其可生产高附加值燃料和化学品,以及可缓解 CO 排放问题而受到广泛关注。在此,本工作报道了一种简便的硬模板策略,制备了具有核壳结构的 Ni@N-C 催化剂,其中镍纳米颗粒(Ni NPs)被薄的氮掺杂碳壳(N-C 壳)包裹。该 Ni@N-C 催化剂在 -1.1 V 时表现出优异的工业电流密度 236.7 mA cm 和超过 97%的 FE。此外,Ni@N-C 可驱动可逆 Zn-CO 电池,最大功率密度为 1.64 mW cm ,且具有出色的循环稳定性。这些优异的性能归因于 Ni@N-C 的协同效应,即 Ni NPs 可以调节 N 掺杂碳壳的电子微环境,从而有利于增强 CO 的吸附能力和电子转移能力。密度泛函理论计算证明,位于 Ni 片顶部的 N-C 的结合构型(Top-Ni@N-C)是热力学上最稳定的,并且对于 COOH 的形成和 CO 的脱附具有最低的热力学势垒。这项工作可能为 CO RR 和 Zn-CO 电池寻找高效、有价值的电催化剂开辟了一条新途径。