Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box, Jyväskylä, 35, 40014 JYU, Finland.
Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyväskylä, P.O. Box, Jyväskylä, 35, 40014 JYU, Finland.
Chemistry. 2023 Jun 7;29(32):e202300155. doi: 10.1002/chem.202300155. Epub 2023 Apr 27.
The design of soft biomaterials requires a deep understanding of molecular self-assembly. Here a nanoscale infrared (IR) spectroscopy study of a two-component supramolecular gel is introduced to assess the system's heterogeneity and supramolecular assembly. In contrast to far-field IR spectroscopy, near-field IR spectroscopy revealed differences in the secondary structures of the gelator molecules and non-covalent interactions at three distinct nano-locations of the gel network. A β-sheet arrangement is dominant in single and parallel fibres with a small proportion of an α-helix present, while the molecular assembly derives from strong hydrogen bonding. However, at the crossing point of two fibres, only the β-sheet motif is observed, with an intense π-π stacking contribution. Near-field nanospectroscopy can become a powerful tool for the nanoscale distinction of non-covalent interactions, while it is expected to advance the existing spectroscopic assessments of supramolecular gels.
软物质材料的设计需要深入了解分子自组装。这里介绍了一种两组件超分子凝胶的纳米级红外(IR)光谱研究,以评估该系统的非均质性和超分子组装。与远场 IR 光谱相比,近场 IR 光谱揭示了凝胶剂分子的二级结构和凝胶网络三个不同纳米位置的非共价相互作用的差异。在单纤维和平行纤维中,β-折叠排列占主导地位,同时存在少量的α-螺旋,而分子组装则源于强氢键。然而,在两根纤维的交叉点处,仅观察到β-折叠图案,同时具有强烈的π-π堆积贡献。近场纳米光谱学有望成为区分非共价相互作用的纳米尺度的有力工具,同时也有望推进对超分子凝胶的现有光谱评估。