Department of Chemistry, University of Cambridge, Cambridge, UK.
Int J Cosmet Sci. 2022 Feb;44(1):42-55. doi: 10.1111/ics.12753. Epub 2021 Dec 14.
The use of conventional microscopy and vibrational spectroscopy in the optical region to investigate the chemical nature of hair fibres on a nanometre scale is frustrated by the diffraction limit of light, prohibiting the spectral elucidation of nanoscale sub-structures that contribute to the bulk properties of hair. The aim of this work was to overcome this limitation and gain unprecedented chemical resolution of cortical cell nano-structure of hair.
The hybrid technique of AFM-IR, combining atomic force microscopy with an IR laser, circumvents the diffraction limit of light and achieves nanoscale chemical resolution down to the AFM tip radius. In this work, AFM-IR was employed on ultra-thin microtomed cross-sections of human hair fibres to spectrally distinguish and characterize the specific protein structures and environments within the nanoscale components of cortical cells.
At first, a topographical and chemical distinction between the macrofibrils and the surrounding intermacrofibillar matrix was achieved based on 2.5 × 2.5 μm maps of cortical cell cross-sections. It was found that the intermacrofibrillar matrix has a large protein content and specific cysteine-related residues, whereas the macrofibrils showed bigger contributions from aliphatic amino acid residues and acidic-/ester-containing species (e.g. lipids). Localized spectra recorded at a spatial resolution of the order of the AFM tip radius enabled the chemical composition of each region to be determined following deconvolution of the Amide-I and Amide-II bands. This provided specific evidence for a greater proportion of α-helices in the macrofibrils and correspondingly larger contributions of β-sheet secondary structures in the intermacrofibrillar matrix, as inferred in earlier studies. Analysis of the parallel and antiparallel β-sheet structures, and of selected dominant amino acid residues, yielded further novel composition and conformation results for both regions.
In this work, we overcome the diffraction limit of light using atomic force microscopy integrated with IR laser spectroscopy (AFM-IR) to characterize sub-micron features of the hair cortex at ultra-high spatial resolution. The resulting spectral analysis shows clear distinctions in the Amide bands in the macrofibrils and surrounding intermacrofibrillar matrix, yielding novel insight into the molecular structure and intermolecular stabilization interactions of the constituent proteins within each cortical component.
传统的显微镜和振动光谱学在光学区域用于研究纳米尺度的毛发纤维的化学性质,但受到光的衍射极限的限制,无法对贡献毛发整体性质的纳米级亚结构进行光谱解析。本工作的目的是克服这一限制,获得皮质细胞纳米结构的前所未有的化学分辨率。
将原子力显微镜与红外激光相结合的混合技术 AFM-IR 克服了光的衍射极限,实现了纳米级化学分辨率,分辨率达到原子力显微镜探针半径以下。在这项工作中,AFM-IR 被用于人类毛发纤维的超薄微切片的横截面,以光谱区分和表征皮质细胞纳米级成分中的特定蛋白质结构和环境。
首先,基于皮质细胞横截面的 2.5×2.5μm 图谱,实现了宏观纤维和周围的纤维间基质之间的形貌和化学区分。结果发现,纤维间基质具有较大的蛋白质含量和特定的半胱氨酸相关残基,而宏观纤维则显示出较大的脂肪族氨基酸残基和酸性/酯类物质(如脂质)的贡献。以原子力显微镜探针半径为数量级记录的局部光谱,通过对酰胺 I 和酰胺 II 带进行去卷积,能够确定每个区域的化学组成。这为宏观纤维中 α-螺旋的比例更大,以及纤维间基质中 β-折叠二级结构的相应更大贡献提供了具体证据,这是在早期研究中推断的。对平行和反平行 β-折叠结构以及选定的主导氨基酸残基的分析,为两个区域提供了进一步的新的组成和构象结果。
在这项工作中,我们使用原子力显微镜与红外激光光谱学(AFM-IR)相结合,克服了光的衍射极限,以超高空间分辨率对毛发皮质的亚微米特征进行了表征。由此产生的光谱分析显示,在宏观纤维和周围的纤维间基质中,酰胺带存在明显的区别,为每个皮质成分中的组成蛋白质的分子结构和分子间稳定相互作用提供了新的见解。