Suppr超能文献

轻度 SARS-CoV-2 感染的甲基化时钟模型提供了对免疫失调的深入了解。

A methylation clock model of mild SARS-CoV-2 infection provides insight into immune dysregulation.

机构信息

Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA, Pittsburgh, USA.

Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, USA.

出版信息

Mol Syst Biol. 2023 May 9;19(5):e11361. doi: 10.15252/msb.202211361. Epub 2023 Mar 15.

Abstract

DNA methylation comprises a cumulative record of lifetime exposures superimposed on genetically determined markers. Little is known about methylation dynamics in humans following an acute perturbation, such as infection. We characterized the temporal trajectory of blood epigenetic remodeling in 133 participants in a prospective study of young adults before, during, and after asymptomatic and mildly symptomatic SARS-CoV-2 infection. The differential methylation caused by asymptomatic or mildly symptomatic infections was indistinguishable. While differential gene expression largely returned to baseline levels after the virus became undetectable, some differentially methylated sites persisted for months of follow-up, with a pattern resembling autoimmune or inflammatory disease. We leveraged these responses to construct methylation-based machine learning models that distinguished samples from pre-, during-, and postinfection time periods, and quantitatively predicted the time since infection. The clinical trajectory in the young adults and in a diverse cohort with more severe outcomes was predicted by the similarity of methylation before or early after SARS-CoV-2 infection to the model-defined postinfection state. Unlike the phenomenon of trained immunity, the postacute SARS-CoV-2 epigenetic landscape we identify is antiprotective.

摘要

DNA 甲基化包含了一生中暴露于遗传决定的标志物之上的累积记录。人们对人类在急性干扰(如感染)后甲基化动态知之甚少。我们在一项针对年轻成年人的前瞻性研究中,对 133 名参与者的血液表观遗传重塑的时间轨迹进行了特征描述,该研究包括无症状和轻度症状 SARS-CoV-2 感染之前、期间和之后。无症状或轻度症状感染引起的差异甲基化是无法区分的。虽然差异基因表达在病毒检测不到后基本恢复到基线水平,但一些差异甲基化位点在数月的随访中持续存在,其模式类似于自身免疫或炎症性疾病。我们利用这些反应构建了基于甲基化的机器学习模型,这些模型可以区分感染前、感染期间和感染后的样本,并对感染后的时间进行定量预测。年轻人和病情更严重的多样化队列中的临床轨迹可通过 SARS-CoV-2 感染前或早期的甲基化与模型定义的感染后状态的相似性来预测。与训练免疫现象不同,我们确定的 SARS-CoV-2 感染后表观遗传景观是反保护的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f32/10167476/1271fd25c88d/MSB-19-e11361-g011.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验