Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany.
J Phys Chem B. 2023 May 4;127(17):3766-3773. doi: 10.1021/acs.jpcb.2c08933. Epub 2023 Mar 15.
The discovery of the light-driven sodium pump rhodopsin 2 (KR2) in 2013 has changed the paradigm that cation transport in microbial rhodopsins is restricted to the translocation of protons. Even though this finding is already remarkable by itself, it also reignited more general discussions about the functional mechanism of ion transport. The unique composition of the retinal binding pocket in KR2 with a tight interaction between the retinal Schiff base and its respective counterion D116 also has interesting implications on the photochemical pathway of the chromophore. Here, we discuss the most recent advances in our understanding of the KR2 functionality from the primary event of photon absorption by all- retinal up to the actual protein response in the later phases of the photocycle, mainly from the point of view of optical spectroscopy. In this context, we furthermore highlight some of the ongoing debates on the photochemistry of microbial rhodopsins and give some perspectives for promising future directions in this field of research.
2013 年,光驱动钠离子泵视紫红质 2(KR2)的发现改变了微生物视紫红质中阳离子转运仅限于质子易位的模式。尽管这一发现本身就很显著,但它也重新引发了关于离子转运功能机制的更广泛讨论。KR2 中视黄醛结合口袋的独特组成,以及视黄醛席夫碱与其相应的反离子 D116 之间的紧密相互作用,对视色素的光化学途径也有有趣的影响。在这里,我们主要从光谱学的角度讨论了我们对 KR2 功能的最新理解,从全视黄醛吸收光子的初始事件到光循环后期的实际蛋白质反应。在这方面,我们还强调了关于微生物视紫红质光化学的一些正在进行的争论,并为该研究领域的有前途的未来方向提供了一些观点。