Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, United States.
Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Zapopan, 45201, Mexico.
ACS Synth Biol. 2023 Apr 21;12(4):963-970. doi: 10.1021/acssynbio.2c00512. Epub 2023 Mar 15.
Sulfide-dependent THI4 thiazole synthases could potentially be used to replace plant cysteine-dependent suicide THI4s, whose high protein turnover rates make thiamin synthesis exceptionally energy-expensive. However, sulfide-dependent THI4s are anaerobic or microoxic enzymes and hence unadapted to the aerobic conditions in plants; they are also slow enzymes ( < 1 h). To improve aerotolerance and activity, we applied continuous directed evolution under aerobic conditions in the yeast OrthoRep system to two sulfide-dependent bacterial THI4s. Seven beneficial single mutations were identified, of which five lie in the active-site cleft predicted by structural modeling and two recapitulate features of naturally aerotolerant THI4s. That single mutations gave substantial improvements suggests that further advance under selection will be possible by stacking mutations. This proof-of-concept study established that the performance of sulfide-dependent THI4s in aerobic conditions is evolvable and, more generally, that yeast OrthoRep provides a plant-like bridge to adapt nonplant enzymes to work better in plants.
依赖硫化物的 THI4 噻唑合酶有可能取代植物中依赖半胱氨酸的自杀型 THI4,因为后者的高蛋白质周转率使得硫胺素合成的能量消耗异常高。然而,依赖硫化物的 THI4 是厌氧或微氧酶,因此不适应植物中的需氧条件;它们也是反应缓慢的酶(<1 小时)。为了提高耐氧性和活性,我们在酵母 OrthoRep 系统中进行了有氧条件下的连续定向进化,针对两种依赖硫化物的细菌 THI4。鉴定出了七个有益的单一突变,其中五个位于结构建模预测的活性位点裂缝中,两个再现了自然耐氧 THI4 的特征。单一突变带来了显著的改善,这表明通过突变叠加进一步进行选择将是可能的。这项概念验证研究表明,依赖硫化物的 THI4 在有氧条件下的性能是可进化的,更广泛地说,酵母 OrthoRep 为适应非植物酶在植物中更好地工作提供了一种类似植物的桥梁。