Suppr超能文献

寻找高效硫胺素噻唑生物合成途径的部分探索。

Parts-Prospecting for a High-Efficiency Thiamin Thiazole Biosynthesis Pathway.

机构信息

Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611.

Department of Environmental Horticulture, University of Florida, Gainesville, Florida 32611.

出版信息

Plant Physiol. 2019 Mar;179(3):958-968. doi: 10.1104/pp.18.01085. Epub 2018 Oct 18.

Abstract

Plants synthesize the thiazole precursor of thiamin (cThz-P) via THIAMIN4 (THI4), a suicide enzyme that mediates one reaction cycle and must then be degraded and resynthesized. It has been estimated that this THI4 turnover consumes 2% to 12% of the maintenance energy budget and that installing an energy-efficient alternative pathway could substantially increase crop yield potential. Available data point to two natural alternatives to the suicidal THI4 pathway: (i) nonsuicidal prokaryotic THI4s that lack the active-site Cys residue on which suicide activity depends, and (ii) an uncharacterized thiazole synthesis pathway in flowers of the tropical arum lily that enables production and emission of large amounts of the cThz-P analog 4-methyl-5-vinylthiazole (MVT). We used functional complementation of an Δ strain to identify a nonsuicidal bacterial THI4 (from ) that can function in conditions like those in plant cells. We explored whether synthesizes MVT de novo via a novel route, via a suicidal or a nonsuicidal THI4, or by catabolizing thiamin. Analysis of developmental changes in MVT emission, extractable MVT, thiamin level, and THI4 expression indicated that flowers make MVT de novo via a massively expressed THI4 and that thiamin is not involved. Functional complementation tests indicated that THI4, which has the active-site Cys needed to operate suicidally, may be capable of suicidal and - in hypoxic conditions - nonsuicidal operation. and THI4s are thus candidate parts for rational redesign or directed evolution of efficient, nonsuicidal THI4s for use in crop improvement.

摘要

植物通过 THIAMIN4(THI4)合成硫胺素(cThz-P)的噻唑前体,THI4 是一种自杀酶,介导一个反应循环,然后必须降解和重新合成。据估计,这种 THI4 周转消耗 2%至 12%的维持能量预算,而安装节能替代途径可以大大提高作物产量潜力。现有数据指向自杀 THI4 途径的两种天然替代物:(i)缺乏自杀活性所依赖的活性位点半胱氨酸残基的非自杀原核 THI4s,以及(ii)热带天南星科百合花朵中未被表征的噻唑合成途径,使大量 cThz-P 类似物 4-甲基-5-乙烯基噻唑(MVT)的产生和释放成为可能。我们使用功能互补的 Δ 菌株来鉴定一种非自杀性细菌 THI4(来自 ),它可以在类似于植物细胞的条件下发挥作用。我们探讨了 是否通过新途径从头合成 MVT,是通过自杀性或非自杀性 THI4,还是通过分解硫胺素。对 MVT 排放、可提取 MVT、硫胺素水平和 THI4 表达的发育变化分析表明, 通过大量表达的 THI4 从头合成 MVT,并且不涉及硫胺素。功能互补测试表明,具有自杀性所需的活性位点半胱氨酸的 THI4 可能能够自杀,并且在缺氧条件下能够非自杀性运作。因此, 和 THI4 是理性重新设计或定向进化高效、非自杀性 THI4 以用于作物改良的候选部分。

相似文献

1
Parts-Prospecting for a High-Efficiency Thiamin Thiazole Biosynthesis Pathway.
Plant Physiol. 2019 Mar;179(3):958-968. doi: 10.1104/pp.18.01085. Epub 2018 Oct 18.
2
Bioinformatic and experimental evidence for suicidal and catalytic plant THI4s.
Biochem J. 2020 Jun 12;477(11):2055-2069. doi: 10.1042/BCJ20200297.
3
Structure and function of aerotolerant, multiple-turnover THI4 thiazole synthases.
Biochem J. 2021 Sep 17;478(17):3265-3279. doi: 10.1042/BCJ20210565.
4
Redesigning thiamin synthesis: Prospects and potential payoffs.
Plant Sci. 2018 Aug;273:92-99. doi: 10.1016/j.plantsci.2018.01.019. Epub 2018 Feb 5.
6
Directed Evolution of Aerotolerance in Sulfide-Dependent Thiazole Synthases.
ACS Synth Biol. 2023 Apr 21;12(4):963-970. doi: 10.1021/acssynbio.2c00512. Epub 2023 Mar 15.
7
From Suicide Enzyme to Catalyst: The Iron-Dependent Sulfide Transfer in Methanococcus jannaschii Thiamin Thiazole Biosynthesis.
J Am Chem Soc. 2016 Mar 23;138(11):3639-42. doi: 10.1021/jacs.6b00445. Epub 2016 Mar 11.
9
Analysis of Chlamydomonas thiamin metabolism in vivo reveals riboswitch plasticity.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14622-7. doi: 10.1073/pnas.1307741110. Epub 2013 Aug 19.
10
Structural Basis for Iron-Mediated Sulfur Transfer in Archael and Yeast Thiazole Synthases.
Biochemistry. 2016 Mar 29;55(12):1826-38. doi: 10.1021/acs.biochem.6b00030. Epub 2016 Mar 10.

引用本文的文献

2
OsTH1 is a key player in thiamin biosynthesis in rice.
Sci Rep. 2024 Jun 12;14(1):13591. doi: 10.1038/s41598-024-62326-2.
3
Directed Evolution of Aerotolerance in Sulfide-Dependent Thiazole Synthases.
ACS Synth Biol. 2023 Apr 21;12(4):963-970. doi: 10.1021/acssynbio.2c00512. Epub 2023 Mar 15.
4
Clock and riboswitch control of in tandem are essential for appropriate gauging of TDP levels under light/dark cycles in Arabidopsis.
iScience. 2023 Feb 3;26(3):106134. doi: 10.1016/j.isci.2023.106134. eCollection 2023 Mar 17.
5
overexpression improves drought tolerance in transgenic alfalfa ( L.).
Front Plant Sci. 2022 Sep 8;13:992024. doi: 10.3389/fpls.2022.992024. eCollection 2022.
6
Natural Variation in Vitamin B and Vitamin B Contents in Rice Germplasm.
Front Plant Sci. 2022 Apr 4;13:856880. doi: 10.3389/fpls.2022.856880. eCollection 2022.
7
Using continuous directed evolution to improve enzymes for plant applications.
Plant Physiol. 2022 Feb 4;188(2):971-983. doi: 10.1093/plphys/kiab500.
8
Structure and function of aerotolerant, multiple-turnover THI4 thiazole synthases.
Biochem J. 2021 Sep 17;478(17):3265-3279. doi: 10.1042/BCJ20210565.
9
Metabolic engineering provides insight into the regulation of thiamin biosynthesis in plants.
Plant Physiol. 2021 Aug 3;186(4):1832-1847. doi: 10.1093/plphys/kiab198.
10
The number of catalytic cycles in an enzyme's lifetime and why it matters to metabolic engineering.
Proc Natl Acad Sci U S A. 2021 Mar 30;118(13). doi: 10.1073/pnas.2023348118.

本文引用的文献

1
Scalable, Continuous Evolution of Genes at Mutation Rates above Genomic Error Thresholds.
Cell. 2018 Dec 13;175(7):1946-1957.e13. doi: 10.1016/j.cell.2018.10.021. Epub 2018 Nov 8.
2
CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window.
Nature. 2018 Aug;560(7717):248-252. doi: 10.1038/s41586-018-0384-8. Epub 2018 Aug 1.
3
Redesigning thiamin synthesis: Prospects and potential payoffs.
Plant Sci. 2018 Aug;273:92-99. doi: 10.1016/j.plantsci.2018.01.019. Epub 2018 Feb 5.
4
From plant metabolic engineering to plant synthetic biology: The evolution of the design/build/test/learn cycle.
Plant Sci. 2018 Aug;273:3-12. doi: 10.1016/j.plantsci.2018.03.035. Epub 2018 Apr 13.
7
Synthetic metabolism: metabolic engineering meets enzyme design.
Curr Opin Chem Biol. 2017 Apr;37:56-62. doi: 10.1016/j.cbpa.2016.12.023. Epub 2017 Jan 30.
8
Protein Degradation Rate in Leaf Growth and Development.
Plant Cell. 2017 Feb;29(2):207-228. doi: 10.1105/tpc.16.00768. Epub 2017 Jan 30.
9
Lignin biosynthesis: Tyrosine shortcut in grasses.
Nat Plants. 2016 Jun 3;2(6):16080. doi: 10.1038/nplants.2016.80.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验