Suppr超能文献

寻找高效硫胺素噻唑生物合成途径的部分探索。

Parts-Prospecting for a High-Efficiency Thiamin Thiazole Biosynthesis Pathway.

机构信息

Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611.

Department of Environmental Horticulture, University of Florida, Gainesville, Florida 32611.

出版信息

Plant Physiol. 2019 Mar;179(3):958-968. doi: 10.1104/pp.18.01085. Epub 2018 Oct 18.

Abstract

Plants synthesize the thiazole precursor of thiamin (cThz-P) via THIAMIN4 (THI4), a suicide enzyme that mediates one reaction cycle and must then be degraded and resynthesized. It has been estimated that this THI4 turnover consumes 2% to 12% of the maintenance energy budget and that installing an energy-efficient alternative pathway could substantially increase crop yield potential. Available data point to two natural alternatives to the suicidal THI4 pathway: (i) nonsuicidal prokaryotic THI4s that lack the active-site Cys residue on which suicide activity depends, and (ii) an uncharacterized thiazole synthesis pathway in flowers of the tropical arum lily that enables production and emission of large amounts of the cThz-P analog 4-methyl-5-vinylthiazole (MVT). We used functional complementation of an Δ strain to identify a nonsuicidal bacterial THI4 (from ) that can function in conditions like those in plant cells. We explored whether synthesizes MVT de novo via a novel route, via a suicidal or a nonsuicidal THI4, or by catabolizing thiamin. Analysis of developmental changes in MVT emission, extractable MVT, thiamin level, and THI4 expression indicated that flowers make MVT de novo via a massively expressed THI4 and that thiamin is not involved. Functional complementation tests indicated that THI4, which has the active-site Cys needed to operate suicidally, may be capable of suicidal and - in hypoxic conditions - nonsuicidal operation. and THI4s are thus candidate parts for rational redesign or directed evolution of efficient, nonsuicidal THI4s for use in crop improvement.

摘要

植物通过 THIAMIN4(THI4)合成硫胺素(cThz-P)的噻唑前体,THI4 是一种自杀酶,介导一个反应循环,然后必须降解和重新合成。据估计,这种 THI4 周转消耗 2%至 12%的维持能量预算,而安装节能替代途径可以大大提高作物产量潜力。现有数据指向自杀 THI4 途径的两种天然替代物:(i)缺乏自杀活性所依赖的活性位点半胱氨酸残基的非自杀原核 THI4s,以及(ii)热带天南星科百合花朵中未被表征的噻唑合成途径,使大量 cThz-P 类似物 4-甲基-5-乙烯基噻唑(MVT)的产生和释放成为可能。我们使用功能互补的 Δ 菌株来鉴定一种非自杀性细菌 THI4(来自 ),它可以在类似于植物细胞的条件下发挥作用。我们探讨了 是否通过新途径从头合成 MVT,是通过自杀性或非自杀性 THI4,还是通过分解硫胺素。对 MVT 排放、可提取 MVT、硫胺素水平和 THI4 表达的发育变化分析表明, 通过大量表达的 THI4 从头合成 MVT,并且不涉及硫胺素。功能互补测试表明,具有自杀性所需的活性位点半胱氨酸的 THI4 可能能够自杀,并且在缺氧条件下能够非自杀性运作。因此, 和 THI4 是理性重新设计或定向进化高效、非自杀性 THI4 以用于作物改良的候选部分。

相似文献

4
Redesigning thiamin synthesis: Prospects and potential payoffs.重新设计硫胺素合成:前景与潜在收益。
Plant Sci. 2018 Aug;273:92-99. doi: 10.1016/j.plantsci.2018.01.019. Epub 2018 Feb 5.
6
9

引用本文的文献

3

本文引用的文献

3
Redesigning thiamin synthesis: Prospects and potential payoffs.重新设计硫胺素合成:前景与潜在收益。
Plant Sci. 2018 Aug;273:92-99. doi: 10.1016/j.plantsci.2018.01.019. Epub 2018 Feb 5.
7
Synthetic metabolism: metabolic engineering meets enzyme design.合成代谢:代谢工程与酶设计的结合
Curr Opin Chem Biol. 2017 Apr;37:56-62. doi: 10.1016/j.cbpa.2016.12.023. Epub 2017 Jan 30.
8
Protein Degradation Rate in Leaf Growth and Development.叶片生长发育过程中的蛋白质降解速率
Plant Cell. 2017 Feb;29(2):207-228. doi: 10.1105/tpc.16.00768. Epub 2017 Jan 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验