Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow, Uttar Pradesh, India.
Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
Environ Sci Pollut Res Int. 2023 Apr;30(17):48929-48947. doi: 10.1007/s11356-023-26220-0. Epub 2023 Mar 15.
The metagenomics approach accelerated the study of genetic information from uncultured microbes and complex microbial communities. In silico research also facilitated an understanding of protein-DNA interactions, protein-protein interactions, docking between proteins and phyto/biochemicals for drug design, and modeling of the 3D structure of proteins. These in silico approaches provided insight into analyzing pathogenic and nonpathogenic strains that helped in the identification of probable genes for vaccines and antimicrobial agents and comparing whole-genome sequences to microbial evolution. Artificial intelligence, more precisely machine learning (ML) and deep learning (DL), has proven to be a promising approach in the field of microbiology to handle, analyze, and utilize large data that are generated through nucleic acid sequencing and proteomics. This enabled the understanding of the functional and taxonomic diversity of microorganisms. ML and DL have been used in the prediction and forecasting of diseases and applied to trace environmental contaminants and environmental quality. This review presents an in-depth analysis of the recent application of silico approaches in microbial genomics, proteomics, functional diversity, vaccine development, and drug design.
宏基因组学方法加速了对未培养微生物和复杂微生物群落遗传信息的研究。计算研究还促进了对蛋白质-DNA 相互作用、蛋白质-蛋白质相互作用、蛋白质与植物/生物化学物质之间对接以进行药物设计以及蛋白质 3D 结构建模的理解。这些计算方法深入分析了致病和非致病菌株,有助于鉴定疫苗和抗菌剂的可能基因,并比较整个基因组序列与微生物进化。人工智能,更确切地说是机器学习 (ML) 和深度学习 (DL),已被证明是微生物学领域的一种很有前途的方法,可以处理、分析和利用通过核酸测序和蛋白质组学产生的大量数据。这使人们能够理解微生物的功能和分类多样性。ML 和 DL 已用于疾病的预测和预报,并应用于追踪环境污染物和环境质量。本文深入分析了计算方法在微生物基因组学、蛋白质组学、功能多样性、疫苗开发和药物设计中的最新应用。