Hagen Michelle, Dass Rupashree, Westhues Cathy, Blom Jochen, Schultheiss Sebastian J, Patz Sascha
Computomics GmbH, Eisenbahnstraße 1, 72072, Tübingen, Baden-Württemberg, Germany.
Bioinformatics and Systems Biology, Justus Liebig University Gießen, Heinrich-Buff-Ring 58, 35390, Gießen, Hesse, Germany.
Environ Microbiome. 2024 May 29;19(1):35. doi: 10.1186/s40793-024-00578-1.
Extreme weather events induced by climate change, particularly droughts, have detrimental consequences for crop yields and food security. Concurrently, these conditions provoke substantial changes in the soil bacterial microbiota and affect plant health. Early recognition of soil affected by drought enables farmers to implement appropriate agricultural management practices. In this context, interpretable machine learning holds immense potential for drought stress classification of soil based on marker taxa.
This study demonstrates that the 16S rRNA-based metagenomic approach of Differential Abundance Analysis methods and machine learning-based Shapley Additive Explanation values provide similar information. They exhibit their potential as complementary approaches for identifying marker taxa and investigating their enrichment or depletion under drought stress in grass lineages. Additionally, the Random Forest Classifier trained on a diverse range of relative abundance data from the soil bacterial micobiome of various plant species achieves a high accuracy of 92.3 % at the genus rank for drought stress prediction. It demonstrates its generalization capacity for the lineages tested.
In the detection of drought stress in soil bacterial microbiota, this study emphasizes the potential of an optimized and generalized location-based ML classifier. By identifying marker taxa, this approach holds promising implications for microbe-assisted plant breeding programs and contributes to the development of sustainable agriculture practices. These findings are crucial for preserving global food security in the face of climate change.
气候变化引发的极端天气事件,尤其是干旱,会对作物产量和粮食安全产生不利影响。同时,这些情况会引发土壤细菌微生物群的显著变化,并影响植物健康。尽早识别受干旱影响的土壤,能使农民实施适当的农业管理措施。在此背景下,可解释的机器学习在基于标记分类群的土壤干旱胁迫分类方面具有巨大潜力。
本研究表明,基于16S rRNA的差异丰度分析方法的宏基因组学方法和基于机器学习的沙普利值加法解释提供了相似的信息。它们作为互补方法,在识别标记分类群以及研究其在禾本科植物干旱胁迫下的富集或耗竭方面展现出潜力。此外,基于来自各种植物物种土壤细菌微生物组的多种相对丰度数据训练的随机森林分类器,在属水平上对干旱胁迫预测的准确率高达92.3%。这证明了其对所测试植物谱系的泛化能力。
在检测土壤细菌微生物群中的干旱胁迫时,本研究强调了优化且通用的基于位置的机器学习分类器的潜力。通过识别标记分类群,这种方法对微生物辅助植物育种计划具有重要意义,并有助于可持续农业实践的发展。这些发现对于在气候变化背景下保障全球粮食安全至关重要。