Suppr超能文献

深度学习方法在 S-ICD 筛查中的相关性分析。

Correlation analysis of deep learning methods in S-ICD screening.

机构信息

Cardiac Rhythm Management Research Department, University Hospital Southampton NHS Foundation Trust, Southampton, UK.

Faculty of Medicine, University of Southampton, Southampton, UK.

出版信息

Ann Noninvasive Electrocardiol. 2023 Jul;28(4):e13056. doi: 10.1111/anec.13056. Epub 2023 Mar 15.

Abstract

BACKGROUND

Machine learning methods are used in the classification of various cardiovascular diseases through ECG data analysis. The concept of varying subcutaneous implantable cardiac defibrillator (S-ICD) eligibility, owing to the dynamicity of ECG signals, has been introduced before. There are practical limitations to acquiring longer durations of ECG signals for S-ICD screening. This study explored the potential use of deep learning methods in S-ICD screening.

METHODS

This was a retrospective study. A deep learning tool was used to provide descriptive analysis of the T:R ratios over 24 h recordings of S-ICD vectors. Spearman's rank correlation test was used to compare the results statistically to those of a "gold standard" S-ICD simulator.

RESULTS

A total of 14 patients (mean age: 63.7 ± 5.2 years, 71.4% male) were recruited and 28 vectors were analyzed. Mean T:R, standard deviation of T:R, and favorable ratio time (FVR)-a new concept introduced in this study-for all vectors combined were 0.21 ± 0.11, 0.08 ± 0.04, and 79 ± 30%, respectively. There were statistically significant strong correlations between the outcomes of our novel tool and the S-ICD simulator (p < .001).

CONCLUSION

Deep learning methods could provide a practical software solution to analyze data acquired for longer durations than current S-ICD screening practices. This could help select patients better suited for S-ICD therapy as well as guide vector selection in S-ICD eligible patients. Further work is needed before this could be translated into clinical practice.

摘要

背景

通过心电图数据分析,机器学习方法被用于对各种心血管疾病进行分类。由于心电图信号的动态性,已经提出了改变皮下植入式心脏除颤器(S-ICD)适用性的概念。为 S-ICD 筛查获取更长时间的心电图信号存在实际限制。本研究探讨了深度学习方法在 S-ICD 筛查中的潜在应用。

方法

这是一项回顾性研究。使用深度学习工具对 S-ICD 向量 24 小时记录的 T:R 比值进行描述性分析。使用 Spearman 秩相关检验对结果进行统计学比较,与 S-ICD 模拟器的“金标准”进行比较。

结果

共招募了 14 名患者(平均年龄:63.7±5.2 岁,71.4%为男性),分析了 28 个向量。所有向量的平均 T:R、T:R 的标准差和本研究中引入的新概念——有利比时间(FVR)分别为 0.21±0.11、0.08±0.04 和 79±30%。我们的新工具的结果与 S-ICD 模拟器之间存在统计学上显著的强相关性(p<.001)。

结论

深度学习方法可以为分析比当前 S-ICD 筛查实践更长时间的数据提供实用的软件解决方案。这有助于选择更适合 S-ICD 治疗的患者,并指导 S-ICD 适用患者的向量选择。在将其转化为临床实践之前,还需要进一步的工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7774/10335624/36e1f3ba0469/ANEC-28-e13056-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验