Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America.
PLoS One. 2023 Mar 15;18(3):e0262321. doi: 10.1371/journal.pone.0262321. eCollection 2023.
Antibody-antigen interaction-at antigenic local environments called B-cell epitopes-is a prominent mechanism for neutralization of infection. Effective mimicry, and display, of B-cell epitopes is key to vaccine design. Here, a physical approach is evaluated for the discovery of epitopes which evolve slowly over closely related pathogens (conserved epitopes). The approach is 1) protein flexibility-based and 2) demonstrated with clinically relevant enveloped viruses, simulated via molecular dynamics. The approach is validated against 1) seven structurally characterized enveloped virus epitopes which evolved the least (out of thirty-nine enveloped virus-antibody structures), 2) two structurally characterized non-enveloped virus epitopes which evolved slowly (out of eight non-enveloped virus-antibody structures), and 3) eight preexisting epitope and peptide discovery algorithms. Rationale for a new benchmarking scheme is presented. A data-driven epitope clustering algorithm is introduced. The prediction of five Zika virus epitopes (for future exploration on recombinant vaccine technologies) is demonstrated. For the first time, protein flexibility is shown to outperform solvent accessible surface area as an epitope discovery metric.
抗体-抗原相互作用——在抗原局部环境中称为 B 细胞表位——是中和感染的主要机制。有效模拟和展示 B 细胞表位是疫苗设计的关键。在这里,评估了一种物理方法来发现进化缓慢的密切相关病原体(保守表位)中的表位。该方法是 1)基于蛋白质柔性的,并且 2)通过分子动力学进行模拟,针对临床相关包膜病毒进行了验证。该方法针对以下内容进行了验证:1)七种结构特征明确的包膜病毒表位(在三十九种包膜病毒-抗体结构中进化最慢),2)两种结构特征明确的非包膜病毒表位(在八种非包膜病毒-抗体结构中进化缓慢),以及 3)八种现有的表位和肽发现算法。提出了新的基准测试方案的原理。引入了一种基于数据的表位聚类算法。展示了对五个寨卡病毒表位的预测(用于进一步探索重组疫苗技术)。首次表明,蛋白质柔性作为表位发现指标优于溶剂可及表面积。