Suppr超能文献

抗体表位预测的最新进展

Recent Progress in Antibody Epitope Prediction.

作者信息

Zeng Xincheng, Bai Ganggang, Sun Chuance, Ma Buyong

机构信息

Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.

Shanghai Digiwiser Biological, Inc., Shanghai 200131, China.

出版信息

Antibodies (Basel). 2023 Aug 8;12(3):52. doi: 10.3390/antib12030052.

Abstract

Recent progress in epitope prediction has shown promising results in the development of vaccines and therapeutics against various diseases. However, the overall accuracy and success rate need to be improved greatly to gain practical application significance, especially conformational epitope prediction. In this review, we examined the general features of antibody-antigen recognition, highlighting the conformation selection mechanism in flexible antibody-antigen binding. We recently highlighted the success and warning signs of antibody epitope predictions, including linear and conformation epitope predictions. While deep learning-based models gradually outperform traditional feature-based machine learning, sequence and structure features still provide insight into antibody-antigen recognition problems.

摘要

表位预测的最新进展在开发针对各种疾病的疫苗和治疗方法方面显示出了令人鼓舞的结果。然而,要获得实际应用意义,总体准确性和成功率仍需大幅提高,尤其是构象表位预测。在本综述中,我们研究了抗体 - 抗原识别的一般特征,强调了柔性抗体 - 抗原结合中的构象选择机制。我们最近强调了抗体表位预测的成功和警示信号,包括线性和构象表位预测。虽然基于深度学习的模型逐渐优于传统的基于特征的机器学习,但序列和结构特征仍然为抗体 - 抗原识别问题提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46e1/10443277/e641f36081ef/antibodies-12-00052-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验