Suppr超能文献

解决人工智能工具在临床实践中应用的挑战:经验原则。

Addressing the Challenges of Implementing Artificial Intelligence Tools in Clinical Practice: Principles From Experience.

机构信息

Senior Director, Data Science Office, Mass General Brigham, Boston, Massachusetts; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Data Science Office, Mass General Brigham, Boston, Massachusetts.

Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Data Science Office, Mass General Brigham, Boston, Massachusetts.

出版信息

J Am Coll Radiol. 2023 Mar;20(3):352-360. doi: 10.1016/j.jacr.2023.01.002.

Abstract

The multitude of artificial intelligence (AI)-based solutions, vendors, and platforms poses a challenging proposition to an already complex clinical radiology practice. Apart from assessing and ensuring acceptable local performance and workflow fit to improve imaging services, AI tools require multiple stakeholders, including clinical, technical, and financial, who collaborate to move potential deployable applications to full clinical deployment in a structured and efficient manner. Postdeployment monitoring and surveillance of such tools require an infrastructure that ensures proper and safe use. Herein, the authors describe their experience and framework for implementing and supporting the use of AI applications in radiology workflow.

摘要

众多基于人工智能 (AI) 的解决方案、供应商和平台给本就复杂的临床放射科实践带来了挑战。除了评估和确保可接受的本地性能和工作流程适应性以改善成像服务外,AI 工具还需要包括临床、技术和财务在内的多个利益相关者协作,以有条理且高效的方式将潜在可部署的应用程序推向全面临床部署。此类工具的部署后监测和监控需要确保正确和安全使用的基础设施。在此,作者描述了他们在放射科工作流程中实施和支持 AI 应用的经验和框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验