Suppr超能文献

在临床实施之前为基于成像的人工智能算法建立验证基础设施。

Establishing a Validation Infrastructure for Imaging-Based Artificial Intelligence Algorithms Before Clinical Implementation.

机构信息

Department of Biomedical Informatics and Medical Education, University of Washington School of Medicine, Seattle, Washington.

Department of Radiology, University of Washington School of Medicine, Seattle, Washington.

出版信息

J Am Coll Radiol. 2024 Oct;21(10):1569-1574. doi: 10.1016/j.jacr.2024.04.027. Epub 2024 May 22.

Abstract

With promising artificial intelligence (AI) algorithms receiving FDA clearance, the potential impact of these models on clinical outcomes must be evaluated locally before their integration into routine workflows. Robust validation infrastructures are pivotal to inspecting the accuracy and generalizability of these deep learning algorithms to ensure both patient safety and health equity. Protected health information concerns, intellectual property rights, and diverse requirements of models impede the development of rigorous external validation infrastructures. The authors propose various suggestions for addressing the challenges associated with the development of efficient, customizable, and cost-effective infrastructures for the external validation of AI models at large medical centers and institutions. The authors present comprehensive steps to establish an AI inferencing infrastructure outside clinical systems to examine the local performance of AI algorithms before health practice or systemwide implementation and promote an evidence-based approach for adopting AI models that can enhance radiology workflows and improve patient outcomes.

摘要

随着有前途的人工智能 (AI) 算法获得 FDA 批准,在将这些模型集成到常规工作流程之前,必须在本地评估它们对临床结果的潜在影响。稳健的验证基础设施对于检查这些深度学习算法的准确性和泛化能力至关重要,以确保患者安全和医疗公平。受保护的健康信息问题、知识产权以及模型的多样化要求阻碍了严格的外部验证基础设施的发展。作者提出了各种建议,以解决在大型医疗中心和机构中开发用于 AI 模型外部验证的高效、可定制和具有成本效益的基础设施所面临的挑战。作者提出了在临床系统之外建立人工智能推理基础设施的综合步骤,以在医疗实践或系统范围实施之前检查人工智能算法的本地性能,并促进采用人工智能模型的循证方法,这些模型可以增强放射科工作流程并改善患者预后。

相似文献

1
Establishing a Validation Infrastructure for Imaging-Based Artificial Intelligence Algorithms Before Clinical Implementation.
J Am Coll Radiol. 2024 Oct;21(10):1569-1574. doi: 10.1016/j.jacr.2024.04.027. Epub 2024 May 22.
3
Requirements for implementation of artificial intelligence in the practice of gastrointestinal pathology.
World J Gastroenterol. 2021 Jun 7;27(21):2818-2833. doi: 10.3748/wjg.v27.i21.2818.
4
Artificial Intelligence in Low- and Middle-Income Countries: Innovating Global Health Radiology.
Radiology. 2020 Dec;297(3):513-520. doi: 10.1148/radiol.2020201434. Epub 2020 Oct 6.
6
Current Clinical Applications of Artificial Intelligence in Radiology and Their Best Supporting Evidence.
J Am Coll Radiol. 2020 Nov;17(11):1371-1381. doi: 10.1016/j.jacr.2020.08.018.
7
Artificial Intelligence: A Private Practice Perspective.
J Am Coll Radiol. 2020 Nov;17(11):1398-1404. doi: 10.1016/j.jacr.2020.09.029. Epub 2020 Oct 1.
8
AI Integration in the Clinical Workflow.
J Digit Imaging. 2021 Dec;34(6):1435-1446. doi: 10.1007/s10278-021-00525-3. Epub 2021 Oct 22.
9
Artificial Intelligence in Breast Imaging: Challenges of Integration Into Clinical Practice.
J Breast Imaging. 2023 May 22;5(3):248-257. doi: 10.1093/jbi/wbad007.
10
Proceedings From the 2022 ACR-RSNA Workshop on Safety, Effectiveness, Reliability, and Transparency in AI.
J Am Coll Radiol. 2024 Jul;21(7):1119-1129. doi: 10.1016/j.jacr.2024.01.024. Epub 2024 Feb 13.

引用本文的文献

2
Multi-Modal Graph Neural Networks for Colposcopy Data Classification and Visualization.
Cancers (Basel). 2025 Apr 30;17(9):1521. doi: 10.3390/cancers17091521.
3
Evolution of an Artificial Intelligence-Powered Application for Mammography.
Diagnostics (Basel). 2025 Mar 24;15(7):822. doi: 10.3390/diagnostics15070822.

本文引用的文献

1
Economic and Environmental Costs of Cloud Technologies for Medical Imaging and Radiology Artificial Intelligence.
J Am Coll Radiol. 2024 Feb;21(2):248-256. doi: 10.1016/j.jacr.2023.11.011. Epub 2023 Dec 9.
2
Protecting patient safety and privacy in the era of artificial intelligence.
Semin Vasc Surg. 2023 Sep;36(3):426-429. doi: 10.1053/j.semvascsurg.2023.06.002. Epub 2023 Jun 24.
3
Addressing the Challenge of Biomedical Data Inequality: An Artificial Intelligence Perspective.
Annu Rev Biomed Data Sci. 2023 Aug 10;6:153-171. doi: 10.1146/annurev-biodatasci-020722-020704. Epub 2023 Apr 27.
4
Autonomous Chest Radiograph Reporting Using AI: Estimation of Clinical Impact.
Radiology. 2023 May;307(3):e222268. doi: 10.1148/radiol.222268. Epub 2023 Mar 7.
5
Generalizability of Machine Learning Models: Quantitative Evaluation of Three Methodological Pitfalls.
Radiol Artif Intell. 2022 Nov 16;5(1):e220028. doi: 10.1148/ryai.220028. eCollection 2023 Jan.
6
Bending the patient safety curve: how much can AI help?
NPJ Digit Med. 2023 Jan 4;6(1):2. doi: 10.1038/s41746-022-00731-5.
7
External Validation of an Ensemble Model for Automated Mammography Interpretation by Artificial Intelligence.
JAMA Netw Open. 2022 Nov 1;5(11):e2242343. doi: 10.1001/jamanetworkopen.2022.42343.
8
Artificial intelligence in cardiology: Hope for the future and power for the present.
Front Cardiovasc Med. 2022 Oct 13;9:945726. doi: 10.3389/fcvm.2022.945726. eCollection 2022.
9
External Validation of Deep Learning Algorithms for Radiologic Diagnosis: A Systematic Review.
Radiol Artif Intell. 2022 May 4;4(3):e210064. doi: 10.1148/ryai.210064. eCollection 2022 May.
10
Independent External Validation of Artificial Intelligence Algorithms for Automated Interpretation of Screening Mammography: A Systematic Review.
J Am Coll Radiol. 2022 Feb;19(2 Pt A):259-273. doi: 10.1016/j.jacr.2021.11.008. Epub 2022 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验