Suppr超能文献

从成纤维细胞生成自组织自主神经节类器官。

Generation of self-organized autonomic ganglion organoids from fibroblasts.

作者信息

Liu Shuting, Xiang Kangjian, Yuan Fa, Xiang Mengqing

机构信息

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.

Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.

出版信息

iScience. 2023 Feb 20;26(3):106241. doi: 10.1016/j.isci.2023.106241. eCollection 2023 Mar 17.

Abstract

Neural organoids have been shown to serve as powerful tools for studying the mechanism of neural development and diseases as well as for screening drugs and developing cell-based therapeutics. Somatic cells have previously been reprogrammed into scattered autonomic ganglion (AG) neurons but not AG organoids. Here we have identified a combination of triple transcription factors (TFs) Ascl1, Phox2a/b, and Hand2 (APH) capable of efficiently reprogramming mouse fibroblasts into self-organized and networked induced AG (iAG) organoids, and characterized them by immunostaining, qRT-PCR, patch-clamping, and scRNA-seq approaches. The iAG neurons exhibit molecular properties, subtype diversity, and electrophysiological characteristics of autonomic neurons. Moreover, they can integrate into the superior cervical ganglia following transplantation and innervate and control the beating rate of co-cultured ventricular myocytes. Thus, iAG organoids may provide a valuable tool to study the pathogenesis of autonomic nervous system diseases and screen for drugs, as well as a source for cell-based therapies.

摘要

神经类器官已被证明是研究神经发育和疾病机制、筛选药物以及开发基于细胞的治疗方法的有力工具。体细胞此前已被重编程为分散的自主神经节(AG)神经元,但尚未重编程为AG类器官。在此,我们鉴定出一种三联转录因子(TFs)组合,即无翅型MMTV整合位点家族成员1(Ascl1)、配对盒基因2a/b(Phox2a/b)和心脏和神经嵴衍生蛋白2(Hand2)(APH),它们能够有效地将小鼠成纤维细胞重编程为自组织且相互连接的诱导自主神经节(iAG)类器官,并通过免疫染色、定量逆转录聚合酶链反应(qRT-PCR)、膜片钳记录和单细胞RNA测序(scRNA-seq)方法对其进行表征。iAG神经元表现出自主神经元的分子特性、亚型多样性和电生理特征。此外,它们在移植后可整合到颈上神经节中,并支配和控制共培养的心室肌细胞的搏动频率。因此,iAG类器官可能为研究自主神经系统疾病的发病机制和药物筛选提供有价值的工具,同时也可为基于细胞的治疗提供细胞来源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0871/10009094/da24d287e849/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验