Department of Chemistry, Smt. S.M. Panchal Science College, Talod, Gujarat, India.
Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute (CDRI), Lucknow, Uttar Pradesh, India.
Curr Protein Pept Sci. 2023;24(4):339-354. doi: 10.2174/1389203724666230315121434.
Many N-terminal acetyltransferases (NATs) play important role in the posttranslational modifications of histone tails. Research showed that these enzymes have been reported upregulated in many cancers. NatD is known to acetylate H4/H2A at the N-terminal. During lung cancer, this enzyme competes with the protein kinase CK2α and blocks the phosphorylation of H4 and, acetylates. It also, we observed that H4 has various mutations at the N-terminal and we considered only four mutations (S1C, R3C, G4D and G4S) to study the impacts of these mutations on H4 binding with NatD using MD simulation.
Our main objective in this study was to understand the structure and dynamics of hNatD under the influence of WT and MT H4 histones bindings. The previous experimental study reported that mutations on H4 N-terminus reduce the catalytic efficiency of N-Terminal acetylation. But here, we performed a molecular- level study thus, we can understand how these mutations (S1C, R3C, G4D and G4S) cause significant depletion in catalytic efficiency of hNatD.
Purely computational approaches were employed to investigate the impacts of four mutations in human histone H4 on its binding with the N-α-acetyltransferase D. Initially, molecular docking was used to dock the histone H4 peptide with the N-α-acetyltransferase. Next, all-atom molecular dynamics simulation was performed to probe the structural deviation and dynamics of N-α-acetyltransferase D under the binding of WT and MT H4 histones.
Our results show that R3C stabilizes the NatD whereas the remaining mutations destabilize the NatD. Thus, mutations have significant impacts on NatD structure. Our finding supports the previous analysis also. Another interesting observation is that the enzymatic activity of hNatD is altered due to the considerably large deviation of acetyl-CoA from its original position (G4D). Further, simulation and correlation data suggest which regions of the hNatD are highly flexible and rigid and, which domains or residues have the correlation and anticorrelation. As hNatD is overexpressed in lung cancer, it is an important drug target for cancer hence, our study provides structural information to target hNatD.
In this study, we examined the impacts of WT and MTs (S1C, R3C, G4D and G4S) histone H4 decapeptides on their bindings with hNatD by using 100 ns all-atom MD simulation. Our results support the previous finding that the mutant H4 histones reduce the catalytic efficiency of hNatD. The MD posttrajectory analyses revealed that S1C, G4S and G4D mutants remarkably alter the residue network in hNatD. The intramolecular hydrogen bond analysis suggested that there is a considerable number of loss of hydrogen bonds in hNatD of hNatD-H4_G4D and hNatD-H4_G4S complexes whereas a large number of hydrogen bonds were increased in hNatD of hNatD-H4_R3C complex during the entire simulations. This implies that R3C mutant binding to hNatD brings stability in hNatD in comparison with WT and other MTs complexes. The linear mutual information (LMI) and Betweenness centrality (BC) suggest that S1C, G4D and G4S significantly disrupt the catalytic site residue network as compared to R3C mutation in H4 histone. Thus, this might be the cause of a notable reduction in the catalytic efficiency of hNatD in these three mutant complexes. Further, interaction analysis supports that E126 is the important residue for the acetyltransferase mechanisms as it is dominantly found to have interactions with numerous residues of MTs histones in MD frames. Additionally, intermolecular hydrogen bond and RMSD analyses of acetyl-CoA predict the higher stability of acetyl-CoA inside the WT complex of hNatD and R3C complex. Also, we report here the structural and dynamic aspects and residue interactions network (RIN) of hNatD to target it to control cell proliferation in lung cancer conditions.
许多 N-端乙酰基转移酶(NATs)在组蛋白尾部的翻译后修饰中发挥重要作用。研究表明,这些酶在许多癌症中被报道上调。NatD 已知在 N 端乙酰化 H4/H2A。在肺癌中,该酶与蛋白激酶 CK2α竞争并阻止 H4 的磷酸化和乙酰化。我们还观察到 H4 在 N 端有各种突变,我们只考虑了四个突变(S1C、R3C、G4D 和 G4S)来使用 MD 模拟研究这些突变对 H4 与 NatD 结合的影响。
我们在这项研究中的主要目标是了解 WT 和 MT H4 组蛋白结合下 hNatD 的结构和动力学。先前的实验研究表明,H4 N 端的突变会降低 N-端乙酰化的催化效率。但在这里,我们进行了分子水平的研究,因此,我们可以了解这些突变(S1C、R3C、G4D 和 G4S)如何导致 hNatD 的催化效率显著下降。
采用纯计算方法研究人类组蛋白 H4 的四个突变对其与 N-α-乙酰基转移酶 D 结合的影响。首先,采用分子对接将组蛋白 H4 肽与 N-α-乙酰基转移酶对接。接下来,进行全原子分子动力学模拟,以探测 WT 和 MT H4 组蛋白结合下 N-α-乙酰基转移酶 D 的结构偏差和动力学。
我们的结果表明,R3C 稳定了 NatD,而其余突变则使 NatD 不稳定。因此,突变对 NatD 结构有重大影响。我们的发现也支持了先前的分析。另一个有趣的观察结果是,由于乙酰辅酶 A 从其原始位置(G4D)发生了相当大的偏离,hNatD 的酶活性发生了改变。此外,模拟和相关数据表明,hNatD 的哪些区域高度灵活,哪些区域刚性,以及哪些结构域或残基具有相关性和反相关性。由于 hNatD 在肺癌中过表达,因此它是癌症的一个重要药物靶点,因此,我们的研究为靶向 hNatD 提供了结构信息。
在这项研究中,我们通过使用 100ns 的全原子 MD 模拟,研究了 WT 和 MT(S1C、R3C、G4D 和 G4S)组蛋白 H4 十肽对其与 hNatD 结合的影响。我们的结果支持了先前的发现,即突变体 H4 组蛋白降低了 hNatD 的催化效率。MD 后轨迹分析表明,S1C、G4S 和 G4D 突变体显著改变了 hNatD 中的残基网络。分子内氢键分析表明,在整个模拟过程中,hNatD-H4_G4D 和 hNatD-H4_G4S 复合物中的 hNatD 中氢键数量显著减少,而 hNatD-H4_R3C 复合物中的氢键数量大量增加。这意味着与 WT 和其他 MT 复合物相比,R3C 突变体与 hNatD 的结合使 hNatD 更加稳定。线性互信息(LMI)和介数中心性(BC)表明,与 R3C 突变相比,S1C、G4D 和 G4S 显著破坏了 H4 组蛋白中催化位点残基网络。因此,这可能是这三个突变体复合物中 hNatD 的催化效率显著降低的原因。此外,相互作用分析支持 E126 是乙酰转移酶机制的重要残基,因为它在 MD 帧中主要发现与 MT 组蛋白的许多残基相互作用。此外,乙酰辅酶 A 的分子间氢键和 RMSD 分析预测 WT 复合物和 R3C 复合物中的乙酰辅酶 A 更稳定。此外,我们在这里报告 hNatD 的结构和动态方面以及残基相互作用网络(RIN),以靶向它来控制肺癌条件下的细胞增殖。