IMDEA Materials, Madrid, Spain.
Department of Materials Science, Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, 28040 Madrid, Spain.
Nanoscale. 2023 Mar 30;15(13):6052-6074. doi: 10.1039/d3nr00289f.
Suspended in the gas phase, 1D inorganic nanoparticles (nanotubes and nanowires) grow to hundreds of microns in a second and can be thus directly assembled into freestanding network materials. The corresponding process continuously transforms gas precursors into aerosols into aerogels into macroscopic nanotextiles. By enabling the assembly of very high aspect ratio nanoparticles, this processing route has translated into high-performance structural materials, transparent conductors and battery anodes, amongst other embodiments. This paper reviews progress in the application of such manufacturing process to nanotubes and nanowires. It analyses 1D nanoparticle growth through floating catalyst chemical vapour deposition (FCCVD), in terms of reaction selectivity, scalability and its inherently ultra-fast growth rates (10-10 atoms per second) up to 1000 times faster than for substrate CVD. We summarise emerging descriptions of the formation of aerogels through percolation theory and multi-scale models for the collision and aggregation of 1D nanoparticles. The paper shows that macroscopic ensembles of 1D nanoparticles resemble textiles in their porous network structure, high flexibility and damage-tolerance. Their bulk properties depend strongly on inter-particle properties and are dominated by alignment and volume fraction. Selected examples of nanotextiles that surpass granular and monolithic materials include structural fibres with polymer-like toughness, transparent conductors, and slurry-free composite electrodes for energy storage.
悬浮在气相中,一维无机纳米粒子(纳米管和纳米线)在一秒钟内生长到数百微米,因此可以直接组装成独立的网络材料。相应的过程不断地将气相前体转化为气溶胶,再转化为气凝胶,最后转化为宏观纳米纺织品。通过实现高纵横比纳米粒子的组装,这种加工路线已经转化为高性能结构材料、透明导体和电池阳极等其他实施例。本文综述了这种制造工艺在纳米管和纳米线中的应用进展。它分析了通过浮动催化剂化学气相沉积(FCCVD)进行一维纳米粒子生长的反应选择性、可扩展性及其固有的超快速生长速率(每秒 10-10 个原子),比基底 CVD 快 1000 倍以上。我们总结了通过渗流理论和 1D 纳米粒子碰撞和聚集的多尺度模型来形成气凝胶的新兴描述。本文表明,宏观的 1D 纳米粒子集合体在其多孔网络结构、高柔韧性和耐损伤性方面类似于纺织品。它们的体性质强烈依赖于粒子间的性质,并由取向和体积分数主导。超越颗粒状和整体材料的纳米纺织品的一些例子包括具有聚合物般韧性的结构纤维、透明导体以及用于储能的无浆料复合电极。