Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, the National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
Acc Chem Res. 2013 Jul 16;46(7):1450-61. doi: 10.1021/ar300272m. Epub 2013 Feb 26.
Since their detection 20 years ago, carbon nanotubes (CNTs) have captured the interest of scientists, because one-dimensional (1D) nanostructures (nanowires, nanotubes, and nanoribbons) have fascinating physical properties and many potential technological applications. These are materials with structural features limited to the range of 1-100 nm in one dimension, and unlimited in the others. When their size goes down to certain characteristic lengths, such as the Bohr radius, the wavelength of incandescent light, and the phonon mean-free path, quantum mechanical effects can occur. This results in novel optical, magnetic, and electronic characteristics. These physical properties, along with unique transport features in the longitudinal direction and large surface-to-volume ratio, make 1D nanostructures attract extensive attention in both fundamental research and engineering applications. From a synthetic point of view, it is highly desirable to develop a simple route for fabricating 1D nanostructures in large scale at low cost. On the other hand, in order to transfer the intrinsic features of individual 1D nanostructures into macroscopic scale and realize practical applications, we need to explore highly efficient and scalable assembly methods to integrate 1D nanostructures into functional macroscopic architectures. In 2006, our group developed a simple hydrothermal method for synthesizing ultrathin Te nanowires (TeNWs) using conventional chemicals. As we found through systematic study over the past several years, we can use the ultrathin TeNWs as a versatile templating material to fabricate a series of high-quality 1D nanostructures by taking the unique advantages of TeNWs, such as large-scale synthesis, high processability, and high reactivity. The obtained 1D products inherit the dimensional (high aspect ratio) and mechanical (high flexibility) features of the original TeNW templates, thus allowing us to construct macroscopic architectures by using them as nanoscale building blocks. In this Account, we describe on our recent developments in the multiplex templating synthesis of 1D nanostructures, their macroscopic assemblies, and applications. We first introduce ultrathin TeNWs and their advantages as a templating material. Through the multiplex templating process, we can prepare a family of 1D nanostructures that covers a wide range of materials, including noble metals, metal oxides, semiconductors, carbon, polymers, and their binary and multiple hybrids. We emphasize the reactivity of templating materials and the versatility of templating processes in this Account. On the basis of the templated 1D products, we then describe a series of macroscopic assemblies of 1D nanostructures, including free-standing membranes, films, hydrogels, and aerogels. These exhibit enormous potential for attractive applications, such as liquid filtration and separation, continuous-flow catalysis, electrocatalysis, polymer-based nanocomposites, and superadsorbents, and elastomeric conductors. We believe that the great versatility of templating synthesis, a scalable assembling process, and large-scale synthesis can significantly enhance the application reliability of the 1D nanostructures.
自 20 年前被发现以来,碳纳米管(CNTs)引起了科学家们的兴趣,因为一维(1D)纳米结构(纳米线、纳米管和纳米带)具有迷人的物理特性和许多潜在的技术应用。这些材料的结构特征限于一维的 1-100nm 范围内,而在其他方向上则不受限制。当它们的尺寸缩小到某些特征长度,如玻尔半径、白炽光的波长和声子平均自由程时,就会发生量子力学效应。这导致了新颖的光学、磁性和电子特性。这些物理特性,以及在纵向方向上独特的传输特性和大的表面积与体积比,使得 1D 纳米结构在基础研究和工程应用中都受到广泛关注。从合成的角度来看,以低成本大规模制备 1D 纳米结构的简单途径是非常可取的。另一方面,为了将单个 1D 纳米结构的固有特性转化为宏观尺度并实现实际应用,我们需要探索高效且可扩展的组装方法,以将 1D 纳米结构集成到具有功能的宏观结构中。2006 年,我们的小组开发了一种简单的水热法,使用常规化学品合成超薄碲纳米线(TeNWs)。通过过去几年的系统研究,我们发现我们可以使用超薄 TeNWs 作为通用模板材料,通过利用 TeNWs 的独特优势,如大规模合成、高加工性和高反应性,来制造一系列高质量的 1D 纳米结构。所得的 1D 产物继承了原始 TeNW 模板的尺寸(高纵横比)和机械(高柔韧性)特性,从而使我们能够将它们用作纳米级构建块来构建宏观结构。在本报告中,我们描述了我们在 1D 纳米结构的多路模板合成、宏观组装及其应用方面的最新进展。我们首先介绍了超薄 TeNWs 及其作为模板材料的优势。通过多路模板工艺,我们可以制备一系列涵盖广泛材料的 1D 纳米结构,包括贵金属、金属氧化物、半导体、碳、聚合物及其二元和多元混合物。我们在本报告中强调了模板材料的反应性和模板工艺的多功能性。基于模板化的 1D 产物,我们随后描述了一系列 1D 纳米结构的宏观组装体,包括独立膜、薄膜、水凝胶和气凝胶。它们在液体过滤和分离、连续流动催化、电催化、聚合物基纳米复合材料和超吸收剂以及弹性导体等方面具有巨大的应用潜力。我们相信,模板合成的多功能性、可扩展的组装工艺和大规模合成可以显著提高 1D 纳米结构的应用可靠性。