Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
Jinhua Institute of Zhejiang University, 321299, Jinhua, China.
Angew Chem Int Ed Engl. 2023 May 8;62(20):e202303097. doi: 10.1002/anie.202303097. Epub 2023 Apr 12.
Lipid nanoparticle-based drug delivery systems have a profound clinical impact on nucleic acid-based therapy and vaccination. Recombinant human insulin, a negatively-charged biomolecule like mRNA, may also be delivered by rationally-designed positively-charged lipid nanoparticles with glucose-sensing elements and be released in a glucose-responsive manner. Herein, we have designed phenylboronic acid-based quaternary amine-type cationic lipids that can self-assemble into spherical lipid nanoparticles in an aqueous solution. Upon mixing insulin and the lipid nanoparticles, a heterostructured insulin complex is formed immediately arising from the electrostatic attraction. In a hyperglycemia-relevant glucose solution, lipid nanoparticles become less positively charged over time, leading to reduced attraction and subsequent insulin release. Compared with native insulin, this lipid nanoparticle-based glucose-responsive insulin shows prolonged blood glucose regulation ability and blood glucose-triggered insulin release in a type 1 diabetic mouse model.
基于脂质纳米颗粒的药物传递系统对核酸治疗和疫苗接种具有深远的临床影响。重组人胰岛素是一种带负电荷的生物分子,类似于 mRNA,也可以通过合理设计的带正电荷的脂质纳米颗粒传递,这些脂质纳米颗粒带有葡萄糖感应元件,并以葡萄糖响应的方式释放。在这里,我们设计了基于苯硼酸的季铵型阳离子脂质,可以在水溶液中自组装成球形脂质纳米颗粒。当胰岛素与脂质纳米颗粒混合时,由于静电吸引作用,立即形成异质结构的胰岛素复合物。在与高血糖相关的葡萄糖溶液中,脂质纳米颗粒的正电荷随时间逐渐减少,导致吸引力降低,随后胰岛素释放。与天然胰岛素相比,这种基于脂质纳米颗粒的葡萄糖响应胰岛素在 1 型糖尿病小鼠模型中表现出延长的血糖调节能力和血糖触发的胰岛素释放。