Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Fisicoquímica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular, Prof. Dr. Alberto Boveris (IBIMOL, UBA-CONICET), Fisicoquímica, Buenos Aires, Argentina.
Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Fisicoquímica, Buenos Aires, Argentina.
Free Radic Biol Med. 2023 May 20;201:66-75. doi: 10.1016/j.freeradbiomed.2023.03.011. Epub 2023 Mar 15.
Hydrogen peroxide is the main metabolite effective in redox regulation and it is considered an insulinomimetic agent, with insulin signalling being essential for normal mitochondrial function in cardiomyocytes. Therefore, the aim of this work was to deeply analyse the heart mitochondrial HO metabolism, in the early stage of type 1 diabetes. Diabetes was induced by Streptozotocin (STZ, single dose, 60 mg × kg, ip.) in male Wistar rats and the animals were sacrificed 10 days after injection. Mitochondrial membrane potential and ATP production, using malate-glutamate as substrates, in the heart of diabetic animals were like the ones observed in control group. Mn-SOD activity was lower (15%) in the heart of diabetic rats even though its expression was increased (29%). The increment in heart mitochondrial HO production (117%) in diabetic animals was accompanied by an enhancement in the activities and expressions of glutathione peroxidase (26% and 42%) and of catalase (200% and 133%), with no changes in the peroxiredoxin activity, leading to [HO] ∼40 nM. Heart mitochondrial lipid peroxidation and protein nitration were higher in STZ-injected animals (45% and 42%) than in control group. The mitochondrial membrane potential and ATP production preservation suggest the absence of irreversible damage at this early stage of diabetes 1. The increase in mitochondrial [HO] above the physiological range, but still below supraphysiological concentration (∼100 nM) seems to be part of the adaptive response triggered in cardiomyocytes due to the absence of insulin. The signs of mitochondrial dysfunction observed in this very early stage of diabetes are consistent with the mitochondrial entity called ″complex I syndrome″.
过氧化氢是有效调节氧化还原的主要代谢物,被认为是一种胰岛素模拟物,胰岛素信号对于心肌细胞中线粒体的正常功能至关重要。因此,本工作的目的是深入分析 1 型糖尿病早期心脏线粒体 HO 代谢。糖尿病通过链脲佐菌素(STZ,单次剂量 60mg×kg,ip.)诱导雄性 Wistar 大鼠,注射后 10 天处死动物。糖尿病动物心脏的线粒体膜电位和使用苹果酸-谷氨酸作为底物的 ATP 产生与对照组相似。Mn-SOD 活性(降低 15%)尽管其表达增加(29%),但在糖尿病大鼠心脏中降低。糖尿病动物心脏线粒体 HO 产生增加(117%)伴随着谷胱甘肽过氧化物酶(增加 26%和 42%)和过氧化氢酶(增加 200%和 133%)活性和表达的增强,而过氧化物酶活性没有变化,导致[HO]约为 40nM。STZ 注射动物心脏线粒体脂质过氧化和蛋白质硝化(分别增加 45%和 42%)高于对照组。线粒体膜电位和 ATP 产生的保持表明在糖尿病 1 早期没有不可逆的损伤。线粒体 [HO] 的增加高于生理范围,但仍低于超生理浓度(约 100nM),似乎是由于缺乏胰岛素而触发的心肌细胞适应性反应的一部分。在糖尿病的这个非常早期阶段观察到的线粒体功能障碍迹象与称为“复合物 I 综合征”的线粒体实体一致。