Suppr超能文献

微生物燃料电池对抗磺胺甲恶唑的酶响应和抗生素耐药基因调控。

Enzymatic response and antibiotic resistance gene regulation by microbial fuel cells to resist sulfamethoxazole.

机构信息

Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin, 300350, China.

Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin, 300350, China; Department of Environmental Engineering, School of Resource and Civil Engineering, Northeastern University, Shenyang, 110819, China.

出版信息

Chemosphere. 2023 Jun;325:138410. doi: 10.1016/j.chemosphere.2023.138410. Epub 2023 Mar 14.

Abstract

Microbial fuel cells (MFCs) are a promising and sustainable technology which can generate electricity and treat antibiotic wastewater simultaneously. However, the antibiotic resistance genes (ARGs) induced by antibiotics in MFCs increase risks to ecosystems and human health. In this study, the activities of enzymes and regulation genes related to ARGs in MFCs spiked with sulfamethoxazole (SMX) were evaluated to explore the induction mechanism of ARGs. Under lower doses of SMX (10 mg/L and 20 mg/L SMX in this study), microorganisms tend to up regulate catalase and RpoS regulon to induce sul1, sul3 and intI1. The microorganisms exposed to higher doses of SMX (30 mg/L and 40 mg/L SMX in this study) tend to up regulate superoxide dismutase and SOS response to generate sul2 and sulA. Moreover, the exposure concentrations of SMX had no significant effect on the electricity production of MFCs. This work suggested that the ARGs in MFCs might be inhibited by affecting enzymatic activities and regulatory genes according to the antibiotic concentration without affecting the electricity production.

摘要

微生物燃料电池 (MFC) 是一种很有前途且可持续的技术,它可以同时产生电能和处理抗生素废水。然而,MFC 中抗生素诱导的抗生素抗性基因 (ARGs) 增加了对生态系统和人类健康的风险。在这项研究中,评估了添加磺胺甲恶唑 (SMX) 的 MFC 中与 ARGs 相关的酶和调控基因的活性,以探讨 ARGs 的诱导机制。在较低剂量的 SMX(本研究中为 10mg/L 和 20mg/L 的 SMX)下,微生物倾向于上调过氧化氢酶和 RpoS 调控子以诱导 sul1、sul3 和 intI1。而暴露于较高剂量 SMX(本研究中为 30mg/L 和 40mg/L 的 SMX)的微生物则倾向于上调超氧化物歧化酶和 SOS 反应以产生 sul2 和 sulA。此外,SMX 的暴露浓度对 MFC 的发电没有显著影响。这项工作表明,根据抗生素浓度,通过影响酶活性和调控基因,MFC 中的 ARGs 可能会被抑制,而不会影响发电。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验