Suppr超能文献

碰撞截面作为 PFAS 分析中的通用分子描述符,以及使用离子淌度谱过滤提高分析灵敏度的应用。

Collision cross-section as a universal molecular descriptor in the analysis of PFAS and use of ion mobility spectrum filtering for improved analytical sensitivities.

机构信息

ONIRIS, INRAE, LABERCA, Nantes, 44000, France; University of Almería, Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain.

ONIRIS, INRAE, LABERCA, Nantes, 44000, France.

出版信息

Anal Chim Acta. 2023 Apr 22;1251:341026. doi: 10.1016/j.aca.2023.341026. Epub 2023 Mar 1.

Abstract

The massive usage of per- and polyfluoroalkyl substances (PFAS), as well as their high chemical stability, have led to their ubiquitous presence in environmental matrices and direct human exposure through contaminated food, particularly fish. In the analysis of this large group of substances, the use of ion mobility coupled to mass spectrometry is of particular relevance because it uses an additional descriptor, the collision cross-section (CCS), which results in increased selectivity. In the present work, the CCS of 24 priority PFAS were experimentally obtained, and the reproducibility of these measurements was evaluated over seven weeks. The average values were employed to critically assess previously reported data and theoretical calculations. This gain in selectivity made it possible to increase the sensitivity of the detection on complex matrices (biota, food and human serum) by using the drift time associated to each analyte as a filter, thus reducing the interferences and background noise and allowing their detection at trace levels.

摘要

大量使用全氟和多氟烷基物质(PFAS),以及它们的高化学稳定性,导致它们在环境基质中无处不在,并通过受污染的食物直接暴露于人类,特别是鱼类。在对这一大组物质进行分析时,离子淌度与质谱联用的使用具有特别的意义,因为它使用了另一个描述符,即碰撞截面(CCS),从而提高了选择性。在本工作中,实验获得了 24 种优先 PFAS 的 CCS,并在七周内评估了这些测量的重现性。采用平均数值对先前报道的数据和理论计算进行了严格评估。这种选择性的提高使得通过使用与每个分析物相关的漂移时间作为过滤器,在复杂基质(生物、食品和人血清)中提高检测灵敏度成为可能,从而减少干扰和背景噪声,并允许在痕量水平下进行检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验