Suppr超能文献

利用离子淌度质谱、质量缺陷分析和机器学习揭示黑暗代谢组中的 PFAS 和其他外源性化学物质。

Uncovering PFAS and Other Xenobiotics in the Dark Metabolome Using Ion Mobility Spectrometry, Mass Defect Analysis, and Machine Learning.

机构信息

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.

School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States.

出版信息

Environ Sci Technol. 2022 Jun 21;56(12):9133-9143. doi: 10.1021/acs.est.2c00201. Epub 2022 Jun 2.

Abstract

The identification of xenobiotics in nontargeted metabolomic analyses is a vital step in understanding human exposure. Xenobiotic metabolism, transformation, excretion, and coexistence with other endogenous molecules, however, greatly complicate the interpretation of features detected in nontargeted studies. While mass spectrometry (MS)-based platforms are commonly used in metabolomic measurements, deconvoluting endogenous metabolites from xenobiotics is also often challenged by the lack of xenobiotic parent and metabolite standards as well as the numerous isomers possible for each small molecule / feature. Here, we evaluate a xenobiotic structural annotation workflow using ion mobility spectrometry coupled with MS (IMS-MS), mass defect filtering, and machine learning to uncover potential xenobiotic classes and species in large metabolomic feature lists. Xenobiotic classes examined included those of known high toxicities, including per- and polyfluoroalkyl substances (PFAS), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and pesticides. Specifically, when the workflow was applied to identify PFAS in the NIST SRM 1957 and 909c human serum samples, it greatly reduced the hundreds of detected liquid chromatography (LC)-IMS-MS features by utilizing both mass defect filtering and / versus IMS collision cross sections relationships. These potential PFAS features were then compared to the EPA CompTox entries, and while some matched within specific / tolerances, there were still many unknowns illustrating the importance of nontargeted studies for detecting new molecules with known chemical characteristics. Additionally, this workflow can also be utilized to evaluate other xenobiotics and enable more confident annotations from nontargeted studies.

摘要

非靶向代谢组学分析中对异源生物的鉴定是了解人类暴露情况的重要步骤。然而,异源生物的代谢、转化、排泄以及与其他内源性分子共存,极大地增加了非靶向研究中检测到的特征的解释难度。尽管基于质谱(MS)的平台通常用于代谢组学测量,但由于缺乏异源生物母体和代谢物标准以及每个小分子/特征可能存在的众多异构体,从异源生物中推断内源性代谢物也常常具有挑战性。在这里,我们使用离子淌度谱结合 MS(IMS-MS)、质量亏损过滤和机器学习来评估一种异源生物结构注释工作流程,以揭示大型代谢物特征列表中潜在的异源生物类别和物质。所检查的异源生物类别包括已知高毒性的类别,包括全氟和多氟烷基物质(PFAS)、多环芳烃(PAHs)、多氯联苯(PCBs)、多溴二苯醚(PBDEs)和农药。具体来说,当该工作流程应用于鉴定 NIST SRM 1957 和 909c 人血清样本中的 PFAS 时,它利用质量亏损过滤和/或 IMS 碰撞截面关系极大地减少了数百个检测到的液相色谱(LC)-IMS-MS 特征。然后将这些潜在的 PFAS 特征与 EPA CompTox 条目进行比较,虽然有些在特定/公差范围内匹配,但仍有许多未知的物质,这说明了非靶向研究在检测具有已知化学特征的新分子方面的重要性。此外,该工作流程还可用于评估其他异源生物,并从非靶向研究中进行更有信心的注释。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验