Suppr超能文献

使用贝叶斯网络的放射治疗计划自动质量保证:一项多机构研究。

Automatic quality assurance of radiotherapy treatment plans using Bayesian networks: A multi-institutional study.

作者信息

Kalendralis Petros, Luk Samuel M H, Canters Richard, Eyssen Denis, Vaniqui Ana, Wolfs Cecile, Murrer Lars, van Elmpt Wouter, Kalet Alan M, Dekker Andre, van Soest Johan, Fijten Rianne, Zegers Catharina M L, Bermejo Inigo

机构信息

Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical center+, Maastricht, Netherlands.

Department of Radiation Oncology, University of Vermont Medical Center, Burlington, VT, United States.

出版信息

Front Oncol. 2023 Feb 28;13:1099994. doi: 10.3389/fonc.2023.1099994. eCollection 2023.

Abstract

PURPOSE

Artificial intelligence applications in radiation oncology have been the focus of study in the last decade. The introduction of automated and intelligent solutions for routine clinical tasks, such as treatment planning and quality assurance, has the potential to increase safety and efficiency of radiotherapy. In this work, we present a multi-institutional study across three different institutions internationally on a Bayesian network (BN)-based initial plan review assistive tool that alerts radiotherapy professionals for potential erroneous or suboptimal treatment plans.

METHODS

Clinical data were collected from the oncology information systems in three institutes in Europe (Maastro clinic - 8753 patients treated between 2012 and 2020) and the United States of America (University of Vermont Medical Center [UVMMC] - 2733 patients, University of Washington [UW] - 6180 patients, treated between 2018 and 2021). We trained the BN model to detect potential errors in radiotherapy treatment plans using different combinations of institutional data and performed single-site and cross-site validation with simulated plans with embedded errors. The simulated errors consisted of three different categories: i) patient setup, ii) treatment planning and iii) prescription. We also compared the strategy of using only diagnostic parameters or all variables as evidence for the BN. We evaluated the model performance utilizing the area under the receiver-operating characteristic curve (AUC).

RESULTS

The best network performance was observed when the BN model is trained and validated using the dataset in the same center. In particular, the testing and validation using UVMMC data has achieved an AUC of 0.92 with all parameters used as evidence. In cross-validation studies, we observed that the BN model performed better when it was trained and validated in institutes with similar technology and treatment protocols (for instance, when testing on UVMMC data, the model trained on UW data achieved an AUC of 0.84, compared with an AUC of 0.64 for the model trained on Maastro data). Also, combining training data from larger clinics (UW and Maastro clinic) and using it on smaller clinics (UVMMC) leads to satisfactory performance with an AUC of 0.85. Lastly, we found that in general the BN model performed better when all variables are considered as evidence.

CONCLUSION

We have developed and validated a Bayesian network model to assist initial treatment plan review using multi-institutional data with different technology and clinical practices. The model has shown good performance even when trained on data from clinics with divergent profiles, suggesting that the model is able to adapt to different data distributions.

摘要

目的

人工智能在放射肿瘤学中的应用在过去十年一直是研究的重点。为常规临床任务引入自动化和智能解决方案,如治疗计划和质量保证,有可能提高放射治疗的安全性和效率。在这项工作中,我们展示了一项国际上跨三个不同机构的多机构研究,该研究基于贝叶斯网络(BN)的初始计划审查辅助工具,该工具可提醒放射治疗专业人员注意潜在的错误或次优治疗计划。

方法

从欧洲的三个机构(马斯特里赫特诊所——2012年至2020年期间治疗了8753名患者)和美国的三个机构(佛蒙特大学医学中心[UVMMC]——2018年至2021年期间治疗了2733名患者,华盛顿大学[UW]——2018年至2021年期间治疗了6180名患者)的肿瘤信息系统中收集临床数据。我们使用机构数据的不同组合训练BN模型,以检测放射治疗计划中的潜在错误,并对嵌入错误的模拟计划进行单站点和跨站点验证。模拟错误包括三个不同类别:i)患者摆位,ii)治疗计划,iii)处方。我们还比较了仅使用诊断参数或所有变量作为BN证据的策略。我们利用接收器操作特征曲线(AUC)下的面积评估模型性能。

结果

当使用同一中心的数据训练和验证BN模型时,观察到最佳的网络性能。特别是,使用UVMMC数据进行测试和验证时,将所有参数用作证据,AUC达到了0.92。在交叉验证研究中,我们观察到,当在技术和治疗方案相似的机构中训练和验证BN模型时,其表现更好(例如,在UVMMC数据上进行测试时,在UW数据上训练的模型AUC为0.84,而在马斯特里赫特诊所数据上训练的模型AUC为0.64)。此外,将较大诊所(UW和马斯特里赫特诊所)的训练数据合并并用于较小诊所(UVMMC),可获得令人满意的性能,AUC为0.85。最后,我们发现,一般来说,当将所有变量视为证据时,BN模型表现更好。

结论

我们开发并验证了一个贝叶斯网络模型,以使用具有不同技术和临床实践的多机构数据辅助初始治疗计划审查。即使在来自不同概况诊所的数据上进行训练,该模型也表现出良好的性能,这表明该模型能够适应不同的数据分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验