Suppr超能文献

大型哺乳动物心脏的光学超微结构通过数据同化恢复不协调交替变化。

Optical Ultrastructure of Large Mammalian Hearts Recovers Discordant Alternans by Data Assimilation.

作者信息

Loppini Alessandro, Erhardt Julia, Fenton Flavio H, Filippi Simonetta, Hörning Marcel, Gizzi Alessio

机构信息

Nonlinear Physics and Mathematical Modeling Laboratory, University Campus Bio-Medico of Rome, Rome, Italy.

Biobased Materials Laboratory, Institute of Biomaterials and Biomolecular Systems, Faculty of Energy, Process and Biotechnology, University of Stuttgart, Stuttgart, Germany.

出版信息

Front Netw Physiol. 2022 Apr 13;2:866101. doi: 10.3389/fnetp.2022.866101. eCollection 2022.

Abstract

Understanding and predicting the mechanisms promoting the onset and sustainability of cardiac arrhythmias represent a primary concern in the scientific and medical communities still today. Despite the long-lasting effort in clinical and physico-mathematical research, a critical aspect to be fully characterized and unveiled is represented by spatiotemporal alternans patterns of cardiac excitation. The identification of discordant alternans and higher-order alternating rhythms by advanced data analyses as well as their prediction by reliable mathematical models represents a major avenue of research for a broad and multidisciplinary scientific community. Current limitations concern two primary aspects: 1) robust and general-purpose feature extraction techniques and 2) data assimilation within reliable and predictive mathematical models. Here, we address both aspects. At first, we extend our previous works on Fourier transformation imaging (FFI), applying the technique to whole-ventricle fluorescence optical mapping. Overall, we identify complex spatial patterns of voltage alternans and characterize higher-order rhythms by a frequency-series analysis. Then, we integrate the optical ultrastructure obtained by FFI analysis within a fine-tuned electrophysiological mathematical model of the cardiac action potential. We build up a novel data assimilation procedure demonstrating its reliability in reproducing complex alternans patterns in two-dimensional computational domains. Finally, we prove that the FFI approach applied to both experimental and simulated signals recovers the same information, thus closing the loop between the experiment, data analysis, and numerical simulations.

摘要

时至今日,了解和预测促进心律失常发生及持续的机制仍是科学界和医学界的首要关注点。尽管在临床和物理数学研究方面付出了长期努力,但心脏兴奋的时空交替模式这一关键方面仍有待全面表征和揭示。通过先进的数据分析识别不一致的交替现象和高阶交替节律,并通过可靠的数学模型对其进行预测,是广大多学科科学界的主要研究途径。当前的局限性涉及两个主要方面:1)强大且通用的特征提取技术;2)可靠且具有预测性的数学模型中的数据同化。在此,我们将解决这两个方面的问题。首先,我们扩展了之前关于傅里叶变换成像(FFI)的工作,将该技术应用于全心室荧光光学映射。总体而言,我们识别了电压交替的复杂空间模式,并通过频率序列分析对高阶节律进行了表征。然后,我们将通过FFI分析获得的光学超微结构整合到一个经过微调的心脏动作电位电生理数学模型中。我们建立了一种新颖的数据同化程序,证明了其在二维计算域中再现复杂交替模式的可靠性。最后,我们证明应用于实验信号和模拟信号的FFI方法能够恢复相同的信息,从而闭合了实验、数据分析和数值模拟之间的循环。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bd0/10012998/329c384faff6/fnetp-02-866101-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验