Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
IEEE Trans Biomed Eng. 2010 Feb;57(2):316-24. doi: 10.1109/TBME.2009.2028652. Epub 2009 Aug 18.
Time-alternating biological signals, i.e., alternans, arise in variety of physiological states marked by dynamic instabilities, e.g., period doubling. Normally, a sequence of large-small-large transients, they can exhibit variable patterns over time and space, including spatial discordance. Capture of the early formation of such alternating regions is challenging because of the spatiotemporal similarities between noise and the small-amplitude alternating signals close to the bifurcation point. We present a new approach for automatic detection of alternating signals in large noisy spatiotemporal datasets by exploiting quantitative measures of alternans evolution, e.g., temporal persistence, and by preserving phase information. The technique specifically targets low amplitude, relatively short alternating sequences and is validated by combinatorics-derived probabilities and empirical datasets with white noise. Using high-resolution optical mapping in live cardiomyocyte networks, exhibiting calcium alternans, we reveal for the first time early fine-scale alternans, close to the noise level, which are linked to the later formation of larger regions and evolution of spatially discordant alternans. This robust method aims at quantification and better understanding of the onset of cardiac arrhythmias and can be applied to general analysis of space-time alternating signals, including the vicinity of the bifurcation point.
时变生物信号,即搏动,出现在多种生理状态中,这些状态以动态不稳定性为标志,例如倍周期。通常,它是一系列大-小-大的瞬变,随着时间和空间的变化,它们可以表现出不同的模式,包括空间失谐。由于靠近分岔点的小幅度交替信号与噪声之间存在时空相似性,因此捕获这种交替区域的早期形成具有挑战性。我们提出了一种新的方法,通过利用搏动演变的定量指标,例如时间持久性,并通过保留相位信息,从大型噪声时空数据集中自动检测交替信号。该技术专门针对低幅度、相对较短的交替序列,并通过组合学衍生概率和具有白噪声的经验数据集进行验证。使用在活心肌细胞网络中进行的高分辨率光学映射,显示钙搏动,我们首次揭示了接近噪声水平的早期精细尺度搏动,这些搏动与较大区域的后期形成和空间失谐搏动的演变有关。这种稳健的方法旨在定量和更好地理解心律失常的发生,并可应用于时空交替信号的一般分析,包括分岔点附近。