Suppr超能文献

利用心率变异性和呼吸信号在重症监护病房进行睡眠分期。一项使用深度神经网络的探索性横断面研究。

Sleep staging in the ICU with heart rate variability and breathing signals. An exploratory cross-sectional study using deep neural networks.

作者信息

Ganglberger Wolfgang, Krishnamurthy Parimala Velpula, Quadri Syed A, Tesh Ryan A, Bucklin Abigail A, Adra Noor, Da Silva Cardoso Madalena, Leone Michael J, Hemmige Aashritha, Rajan Subapriya, Panneerselvam Ezhil, Paixao Luis, Higgins Jasmine, Ayub Muhammad Abubakar, Shao Yu-Ping, Coughlin Brian, Sun Haoqi, Ye Elissa M, Cash Sydney S, Thompson B Taylor, Akeju Oluwaseun, Kuller David, Thomas Robert J, Westover M Brandon

机构信息

Department of Neurology, Massachusetts General Hospital, MGH, Boston, MA, United States.

Clinical Data Animation Center (CDAC), Massachusetts General Hospital, Boston, MA, United States.

出版信息

Front Netw Physiol. 2023 Feb 27;3:1120390. doi: 10.3389/fnetp.2023.1120390. eCollection 2023.

Abstract

To measure sleep in the intensive care unit (ICU), full polysomnography is impractical, while activity monitoring and subjective assessments are severely confounded. However, sleep is an intensely networked state, and reflected in numerous signals. Here, we explore the feasibility of estimating conventional sleep indices in the ICU with heart rate variability (HRV) and respiration signals using artificial intelligence methods We used deep learning models to stage sleep with HRV (through electrocardiogram) and respiratory effort (through a wearable belt) signals in critically ill adult patients admitted to surgical and medical ICUs, and in age and sex-matched sleep laboratory patients We studied 102 adult patients in the ICU across multiple days and nights, and 220 patients in a clinical sleep laboratory. We found that sleep stages predicted by HRV- and breathing-based models showed agreement in 60% of the ICU data and in 81% of the sleep laboratory data. In the ICU, deep NREM (N2 + N3) proportion of total sleep duration was reduced (ICU 39%, sleep laboratory 57%, < 0.01), REM proportion showed heavy-tailed distribution, and the number of wake transitions per hour of sleep (median 3.6) was comparable to sleep laboratory patients with sleep-disordered breathing (median 3.9). Sleep in the ICU was also fragmented, with 38% of sleep occurring during daytime hours. Finally, patients in the ICU showed faster and less variable breathing patterns compared to sleep laboratory patients The cardiovascular and respiratory networks encode sleep state information, which, together with artificial intelligence methods, can be utilized to measure sleep state in the ICU.

摘要

在重症监护病房(ICU)中,进行全夜多导睡眠图监测并不实际,而活动监测和主观评估又存在严重干扰因素。然而,睡眠是一种高度网络化的状态,并反映在众多信号中。在此,我们探讨利用人工智能方法,通过心率变异性(HRV)和呼吸信号来估计ICU中传统睡眠指标的可行性。我们使用深度学习模型,根据HRV(通过心电图)和呼吸努力(通过可穿戴腰带)信号,对入住外科和内科ICU的成年重症患者以及年龄和性别匹配的睡眠实验室患者进行睡眠分期。我们对102名ICU成年患者进行了多天多夜的研究,并对220名临床睡眠实验室患者进行了研究。我们发现,基于HRV和呼吸的模型预测的睡眠阶段在60%的ICU数据和81%的睡眠实验室数据中显示出一致性。在ICU中,深度非快速眼动睡眠(N2 + N3)占总睡眠时间的比例降低(ICU为39%,睡眠实验室为57%,P < 0.01),快速眼动睡眠比例呈重尾分布,每小时睡眠中的觉醒转换次数(中位数3.6)与患有睡眠呼吸障碍的睡眠实验室患者(中位数3.9)相当。ICU中的睡眠也很碎片化,38%的睡眠发生在白天。最后,与睡眠实验室患者相比,ICU患者的呼吸模式更快且变异性更小。心血管和呼吸网络编码睡眠状态信息,结合人工智能方法,可用于测量ICU中的睡眠状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7803/10013021/f2b51215ad2d/fnetp-03-1120390-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验