Suppr超能文献

稀土附着于稀有蓝藻:稀土元素生物修复与回收的未来潜力

Rare earths stick to rare cyanobacteria: Future potential for bioremediation and recovery of rare earth elements.

作者信息

Paper Michael, Koch Max, Jung Patrick, Lakatos Michael, Nilges Tom, Brück Thomas B

机构信息

Werner Siemens-Chair of Synthetic Biotechnology, School of Natural Sciences, Department of Chemistry, Technical University of Munich, Garching, Germany.

Synthesis and Characterization of Innovative Materials, School of Natural Sciences, Department of Chemistry, Technical University of Munich, Garching, Germany.

出版信息

Front Bioeng Biotechnol. 2023 Feb 28;11:1130939. doi: 10.3389/fbioe.2023.1130939. eCollection 2023.

Abstract

Biosorption of metal ions by phototrophic microorganisms is regarded as a sustainable and alternative method for bioremediation and metal recovery. In this study, 12 cyanobacterial strains, including 7 terrestrial and 5 aquatic cyanobacteria, covering a broad phylogenetic diversity were investigated for their potential application in the enrichment of rare earth elements through biosorption. A screening for the maximum adsorption capacity of cerium, neodymium, terbium, and lanthanum was conducted in which sp. 20.02 showed the highest adsorption capacity with 84.2-91.5 mg g. Additionally, UTEX 2973, SAG 34.79, 90.03, and sp. 89.12 were promising candidate strains, with maximum adsorption capacities of 69.5-83.4 mg g, 68.6-83.5 mg g, 44.7-70.6 mg g, and 47.2-67.1 mg g respectively. Experiments with cerium on adsorption properties of the five highest metal adsorbing strains displayed fast adsorption kinetics and a strong influence of the pH value on metal uptake, with an optimum at pH 5 to 6. Studies on binding specificity with mixed-metal solutions strongly indicated an ion-exchange mechanism in which Na, K, Mg, and Ca ions are replaced by other metal cations during the biosorption process. Depending on the cyanobacterial strain, FT-IR analysis indicated the involvement different functional groups like hydroxyl and carboxyl groups during the adsorption process. Overall, the application of cyanobacteria as biosorbent in bioremediation and recovery of rare earth elements is a promising method for the development of an industrial process and has to be further optimized and adjusted regarding metal-containing wastewater and adsorption efficiency by cyanobacterial biomass.

摘要

光合微生物对金属离子的生物吸附被视为一种可持续的生物修复和金属回收替代方法。在本研究中,对12株蓝藻菌株进行了研究,其中包括7株陆生蓝藻和5株水生蓝藻,它们具有广泛的系统发育多样性,研究其通过生物吸附富集稀土元素的潜在应用。对铈、钕、铽和镧的最大吸附容量进行了筛选,其中sp. 20.02显示出最高吸附容量,为84.2 - 91.5 mg/g。此外,UTEX 2973、SAG 34.79、90.03和sp. 89.12是有前景的候选菌株,最大吸附容量分别为69.5 - 83.4 mg/g、68.6 - 83.5 mg/g、44.7 - 70.6 mg/g和47.2 - 67.1 mg/g。对铈在五种最高金属吸附菌株上的吸附特性进行的实验显示出快速的吸附动力学,并且pH值对金属吸收有强烈影响,最佳pH值为5至6。对与混合金属溶液的结合特异性的研究强烈表明存在离子交换机制,即在生物吸附过程中,Na、K、Mg和Ca离子被其他金属阳离子取代。根据蓝藻菌株的不同,傅里叶变换红外光谱分析表明在吸附过程中涉及羟基和羧基等不同官能团。总体而言,将蓝藻作为生物吸附剂应用于生物修复和稀土元素回收是一种有前景的工业过程开发方法,并且必须针对含金属废水和蓝藻生物质的吸附效率进一步优化和调整。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f31c/10011134/24aff716f7d5/fbioe-11-1130939-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验