Suppr超能文献

大栅极电压和超薄膜电解质对双层栅二维晶体晶体管载流子密度的影响。

Impact of Large Gate Voltages and Ultrathin Polymer Electrolytes on Carrier Density in Electric-Double-Layer-Gated Two-Dimensional Crystal Transistors.

机构信息

Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

出版信息

ACS Appl Mater Interfaces. 2023 Mar 29;15(12):15785-15796. doi: 10.1021/acsami.2c13140. Epub 2023 Mar 16.

Abstract

Electric-double-layer (EDL) gating can induce large capacitance densities (∼1-10 μF cm) in two-dimensional (2D) semiconductors; however, several properties of the electrolyte limit performance. One property is the electrochemical activity which limits the gate voltage () that can be applied and therefore the maximum extent to which carriers can be modulated. A second property is electrolyte thickness, which sets the response speed of the EDL gate and therefore the time scale over which the channel can be doped. Typical thicknesses are on the order of micrometers, but thinner electrolytes (nanometers) are needed for very-large-scale-integration (VLSI) in terms of both physical thickness and the speed that accompanies scaling. In this study, finite element modeling of an EDL-gated field-effect transistor (FET) is used to self-consistently couple ion transport in the electrolyte to carrier transport in the semiconductor, in which density of states, and therefore quantum capacitance, is included. The model reveals that 50 to 65% of the applied potential drops across the semiconductor, leaving 35 to 50% to drop across the two EDLs. Accounting for the potential drop in the channel suggests that higher carrier densities can be achieved at larger applied without concern for inducing electrochemical reactions. This insight is tested experimentally via Hall measurements of graphene FETs for which is extended from ±3 to ±6 V. Doubling the gate voltage increases the sheet carrier density by an additional 2.3 × 10 cm for electrons and 1.4 × 10 cm for holes without inducing electrochemistry. To address the need for thickness scaling, the thickness of the solid polymer electrolyte, poly(ethylene oxide) (PEO):CsClO, is decreased from 1 μm to 10 nm and used to EDL gate graphene FETs. Sheet carrier density measurements on graphene Hall bars prove that the carrier densities remain constant throughout the measured thickness range (10 nm-1 μm). The results indicate promise for overcoming the physical and electrical limitations to VLSI while taking advantage of the ultrahigh carrier densities induced by EDL gating.

摘要

电双层(EDL)门控可以在二维(2D)半导体中诱导出大的电容密度(∼1-10 μF cm);然而,电解质的几个性质限制了性能。一个性质是电化学活性,它限制了可以施加的栅极电压(),因此限制了载流子可以被调制的最大程度。另一个性质是电解质的厚度,它决定了 EDL 门的响应速度,因此决定了沟道可以掺杂的时间尺度。典型的厚度在微米量级,但为了在物理厚度和伴随缩放的速度方面实现非常大规模集成电路(VLSI),需要更薄的电解质(纳米级)。在这项研究中,使用 EDL 门控场效应晶体管(FET)的有限元建模来自洽地将电解质中的离子输运与半导体中的载流子输运耦合,其中包括态密度,因此包括量子电容。该模型表明,施加的电势有 50%至 65%落在半导体上,其余 35%至 50%落在两个 EDL 上。考虑到沟道中的电势降表明,可以在更大的应用电势下实现更高的载流子密度,而不必担心诱导电化学反应。通过对石墨烯 FET 的霍尔测量实验验证了这一见解,其中的被扩展到±3 至±6 V。将栅极电压加倍会使电子的面载流子密度增加额外的 2.3×10cm,而空穴的面载流子密度增加 1.4×10cm,而不会诱导电化学。为了解决厚度缩放的需求,将固体聚合物电解质聚(环氧乙烷)(PEO):CsClO 的厚度从 1 μm 减小到 10nm,并用于 EDL 门控石墨烯 FET。在石墨烯霍尔条上进行的面载流子密度测量证明,在整个测量厚度范围内(10nm-1μm),载流子密度保持不变。这些结果表明,在利用 EDL 门控诱导的超高载流子密度的同时,克服了 VLSI 的物理和电气限制是有希望的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15b3/10064313/9be3d8f5af6e/am2c13140_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验