Subramanian Shruti, Campbell Quinn T, Moser Simon K, Kiemle Jonas, Zimmermann Philipp, Seifert Paul, Sigger Florian, Sharma Deeksha, Al-Sadeg Hala, Labella Michael, Waters Dacen, Feenstra Randall M, Koch Roland J, Jozwiak Chris, Bostwick Aaron, Rotenberg Eli, Dabo Ismaila, Holleitner Alexander W, Beechem Thomas E, Wurstbauer Ursula, Robinson Joshua A
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
ACS Nano. 2020 Dec 22;14(12):16663-16671. doi: 10.1021/acsnano.0c02527. Epub 2020 Nov 16.
Integration of semiconducting transition metal dichalcogenides (TMDs) into functional optoelectronic circuitries requires an understanding of the charge transfer across the interface between the TMD and the contacting material. Here, we use spatially resolved photocurrent microscopy to demonstrate electronic uniformity at the epitaxial graphene/molybdenum disulfide (EG/MoS) interface. A 10× larger photocurrent is extracted at the EG/MoS interface when compared to the metal (Ti/Au)/MoS interface. This is supported by semi-local density functional theory (DFT), which predicts the Schottky barrier at the EG/MoS interface to be ∼2× lower than that at Ti/MoS. We provide a direct visualization of a 2D material Schottky barrier through combination of angle-resolved photoemission spectroscopy with spatial resolution selected to be ∼300 nm (nano-ARPES) and DFT calculations. A bending of ∼500 meV over a length scale of ∼2-3 μm in the valence band maximum of MoS is observed via nano-ARPES. We explicate a correlation between experimental demonstration and theoretical predictions of barriers at graphene/TMD interfaces. Spatially resolved photocurrent mapping allows for directly visualizing the uniformity of built-in electric fields at heterostructure interfaces, providing a guide for microscopic engineering of charge transport across heterointerfaces. This simple probe-based technique also speaks directly to the 2D synthesis community to elucidate electronic uniformity at domain boundaries alongside morphological uniformity over large areas.
将半导体过渡金属二硫属化物(TMDs)集成到功能性光电器件中需要了解TMD与接触材料之间界面处的电荷转移。在此,我们使用空间分辨光电流显微镜来证明外延石墨烯/二硫化钼(EG/MoS)界面处的电子均匀性。与金属(Ti/Au)/MoS界面相比,EG/MoS界面处提取的光电流大10倍。这得到了半局域密度泛函理论(DFT)的支持,该理论预测EG/MoS界面处的肖特基势垒比Ti/MoS界面处的低约2倍。我们通过结合空间分辨率约为300 nm的角分辨光电子能谱(纳米ARPES)和DFT计算,直接可视化了二维材料的肖特基势垒。通过纳米ARPES观察到,在MoS的价带最大值中,在约2 - 3μm的长度尺度上有约500 meV的弯曲。我们阐述了石墨烯/TMD界面处势垒的实验演示与理论预测之间的相关性。空间分辨光电流映射允许直接可视化异质结构界面处内置电场的均匀性,为跨异质界面的电荷传输微观工程提供指导。这种基于简单探针的技术也直接与二维合成领域相关,以阐明大面积上畴边界处的电子均匀性以及形态均匀性。