Pinto Dinesh, Paone Domenico, Kern Bastian, Dierker Tim, Wieczorek René, Singha Aparajita, Dasari Durga, Finkler Amit, Harneit Wolfgang, Wrachtrup Jörg, Kern Klaus
Max Planck Institute for Solid State Research, Stuttgart, Germany.
Institut de Physique, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Nat Commun. 2020 Dec 17;11(1):6405. doi: 10.1038/s41467-020-20202-3.
Atomic spins for quantum technologies need to be individually addressed and positioned with nanoscale precision. C fullerene cages offer a robust packaging for atomic spins, while allowing in-situ physical positioning at the nanoscale. However, achieving single-spin level readout and control of endofullerenes has so far remained elusive. In this work, we demonstrate electron paramagnetic resonance on an encapsulated nitrogen spin (N@C) within a C matrix using a single near-surface nitrogen vacancy (NV) center in diamond at 4.7 K. Exploiting the strong magnetic dipolar interaction between the NV and endofullerene electronic spins, we demonstrate radio-frequency pulse controlled Rabi oscillations and measure spin-echos on an encapsulated spin. Modeling the results using second-order perturbation theory reveals an enhanced hyperfine interaction and zero-field splitting, possibly caused by surface adsorption on diamond. These results demonstrate the first step towards controlling single endofullerenes, and possibly building large-scale endofullerene quantum machines, which can be scaled using standard positioning or self-assembly methods.
用于量子技术的原子自旋需要以纳米级精度进行单独寻址和定位。C富勒烯笼为原子自旋提供了一个坚固的封装,同时允许在纳米尺度上进行原位物理定位。然而,迄今为止,实现单自旋水平的富勒烯内原子读出和控制仍然难以捉摸。在这项工作中,我们在4.7 K下使用金刚石中的单个近表面氮空位(NV)中心,在C矩阵内的封装氮自旋(N@C)上展示了电子顺磁共振。利用NV与富勒烯内电子自旋之间强烈的磁偶极相互作用,我们展示了射频脉冲控制的拉比振荡,并测量了封装自旋上的自旋回波。使用二阶微扰理论对结果进行建模,揭示了增强的超精细相互作用和零场分裂,这可能是由金刚石表面吸附引起的。这些结果展示了控制单个富勒烯内原子的第一步,并且有可能构建大规模的富勒烯量子机器,其可以使用标准定位或自组装方法进行扩展。