Suppr超能文献

风险暴露因素对墨西哥华雷斯城 COVID-19 大流行期间道路事故频率的影响。一个负二项式空间回归模型。

Risk exposure factors influencing the frequency of road crashes during the COVID-19 pandemic in Ciudad Juarez, Mexico. A negative binomial spatial regression model.

机构信息

Architecture Department, Universidad Autonoma de Ciudad Juarez, Ciudad Juarez, Mexico.

Urban and Environmental Studies Department, El Colegio de la Frontera Norte, Ciudad Juarez, Mexico.

出版信息

Int J Inj Contr Saf Promot. 2023 Sep;30(3):362-374. doi: 10.1080/17457300.2023.2188469. Epub 2023 Mar 16.

Abstract

The article aims to investigate the influence of risk exposure factors on the frequency of road crashes from January to August 2020 in Ciudad Juarez, Mexico. It is a longitudinal study with four data sets: road crashes, population and housing census, location of economic activities, and road network information. Specifically, this study investigates the relationship between exposure factors - demographics, main roads and land use - and road crashes. A mixed method analysis was employed, (1) spatial analysis using GIS techniques; and (2) a negative binomial spatial regression model. The results showed a strong spatial dependence (0.274; -value 0.00) of road crashes in the census tracts, and this effect was statistically significant (0.007) in the spatial regression model. In the model, a high probability (<0.05) of road crashes in the census tracts was found with the population aged 15 to 65 years, the length of main roads and the level of road coverage (Engel index), land uses with economic activities of an industrial and commercial character. The findings of this study successfully capture the social, economic, and urban conditions during the January-August 2020 period in the context of the COVID-19 pandemic. This new knowledge could help create preventive plans and policies to address the frequency of road crashes.

摘要

本文旨在探讨 2020 年 1 月至 8 月墨西哥华雷斯市风险暴露因素对道路碰撞频率的影响。这是一项具有四个数据集的纵向研究:道路碰撞、人口和住房普查、经济活动地点和道路网络信息。具体来说,本研究调查了暴露因素(人口统计学、主要道路和土地利用)与道路碰撞之间的关系。采用混合方法分析,(1)使用 GIS 技术进行空间分析;(2)负二项式空间回归模型。结果表明,在普查区道路碰撞具有很强的空间依赖性(0.274;-值 0.00),并且在空间回归模型中这种影响具有统计学意义(0.007)。在该模型中,发现普查区的道路碰撞概率较高(<0.05),与 15 至 65 岁的人口、主要道路长度和道路覆盖率(恩格尔指数)、具有工业和商业特征的经济活动的土地利用有关。本研究的结果成功捕捉了 COVID-19 大流行背景下 2020 年 1 月至 8 月期间的社会、经济和城市状况。这些新知识可以帮助制定预防计划和政策,以解决道路碰撞频率问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验