From the Departments of Radiology and Oncology (L.L.d.G., P.A., K.T.C., C.d.C.L.)
Lysholm Department of Neuroradiology (L.L.d.G., S.B.), The National Hospital of Neurology and Neurosurgery.
AJNR Am J Neuroradiol. 2023 Apr;44(4):424-433. doi: 10.3174/ajnr.A7820. Epub 2023 Mar 16.
Superagers are defined as older adults with episodic memory performance similar or superior to that in middle-aged adults. This study aimed to investigate the key differences in discriminative networks and their main nodes between superagers and cognitively average elderly controls. In addition, we sought to explore differences in sensitivity in detecting these functional activities across the networks at 3T and 7T MR imaging fields.
Fifty-five subjects 80 years of age or older were screened using a detailed neuropsychological protocol, and 31 participants, comprising 14 superagers and 17 cognitively average elderly controls, were included for analysis. Participants underwent resting-state-fMRI at 3T and 7T MR imaging. A prediction classification algorithm using a penalized regression model on the measurements of the network was used to calculate the probabilities of a healthy older adult being a superager. Additionally, ORs quantified the influence of each node across preselected networks.
The key networks that differentiated superagers and elderly controls were the default mode, salience, and language networks. The most discriminative nodes (ORs > 1) in superagers encompassed areas in the precuneus posterior cingulate cortex, prefrontal cortex, temporoparietal junction, temporal pole, extrastriate superior cortex, and insula. The prediction classification model for being a superager showed better performance using the 7T compared with 3T resting-state-fMRI data set.
Our findings suggest that the functional connectivity in the default mode, salience, and language networks can provide potential imaging biomarkers for predicting superagers. The 7T field holds promise for the most appropriate study setting to accurately detect the functional connectivity patterns in superagers.
超级老年人被定义为具有与中年人相似或更优的情景记忆表现的老年人。本研究旨在探究超级老年人与认知正常的老年对照组之间具有鉴别力的网络及其主要节点的关键差异。此外,我们还试图探索在 3T 和 7T 磁共振成像场中检测这些功能活动的网络灵敏度差异。
对 55 名 80 岁或以上的老年人进行详细的神经心理学测试筛选,其中 31 名参与者(包括 14 名超级老年人和 17 名认知正常的老年对照组)被纳入分析。参与者接受了 3T 和 7T 磁共振成像的静息态 fMRI。使用基于测量值的惩罚回归模型的预测分类算法计算健康老年人成为超级老年人的概率。此外,比值比(OR)量化了每个节点在预选网络中的影响。
区分超级老年人和老年对照组的关键网络为默认模式、突显和语言网络。超级老年人中最具鉴别力的节点(OR>1)包括后扣带回皮质、前额叶皮质、颞顶联合区、颞极、外侧顶叶皮质和岛叶的皮质。使用 7T 静息态 fMRI 数据的预测分类模型比 3T 数据的表现更好。
我们的研究结果表明,默认模式、突显和语言网络的功能连接可以为预测超级老年人提供潜在的影像学生物标志物。7T 场有望成为最适合的研究环境,以准确检测超级老年人的功能连接模式。