Suppr超能文献

利用原子力显微镜观察金属酞菁内单个原子的电子轨道特征。

Observation of electron orbital signatures of single atoms within metal-phthalocyanines using atomic force microscopy.

机构信息

Princeton Materials Institute, Princeton University, Princeton, NJ, 08540-8211, USA.

McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712-1589, USA.

出版信息

Nat Commun. 2023 Mar 16;14(1):1460. doi: 10.1038/s41467-023-37023-9.

Abstract

Resolving the electronic structure of a single atom within a molecule is of fundamental importance for understanding and predicting chemical and physical properties of functional molecules such as molecular catalysts. However, the observation of the orbital signature of an individual atom is challenging. We report here the direct identification of two adjacent transition-metal atoms, Fe and Co, within phthalocyanine molecules using high-resolution noncontact atomic force microscopy (HR-AFM). HR-AFM imaging reveals that the Co atom is brighter and presents four distinct lobes on the horizontal plane whereas the Fe atom displays a "square" morphology. Pico-force spectroscopy measurements show a larger repulsion force of about 5 pN on the tip exerted by Co in comparison to Fe. Our combined experimental and theoretical results demonstrate that both the distinguishable features in AFM images and the variation in the measured forces arise from Co's higher electron orbital occupation above the molecular plane. The ability to directly observe orbital signatures using HR-AFM should provide a promising approach to characterizing the electronic structure of an individual atom in a molecular species and to understand mechanisms of certain chemical reactions.

摘要

确定分子中单原子的电子结构对于理解和预测功能分子(如分子催化剂)的化学和物理性质至关重要。然而,观察单个原子的轨道特征具有挑战性。我们在这里报告了使用高分辨率非接触原子力显微镜(HR-AFM)直接识别酞菁分子中两个相邻的过渡金属原子,Fe 和 Co。HR-AFM 成像表明,Co 原子更亮,在水平面上呈现四个明显的叶瓣,而 Fe 原子呈现“方形”形态。皮秒力谱测量显示 Co 原子在针尖上施加的排斥力约为 5 pN,明显大于 Fe。我们的实验和理论结果表明,原子力显微镜图像中的可区分特征以及测量力的变化均源于 Co 原子在分子平面上方的较高电子轨道占据。使用 HR-AFM 直接观察轨道特征的能力,应为表征单个原子在分子物种中的电子结构以及理解某些化学反应机制提供一种很有前途的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5837/10020477/583a4fe68d8b/41467_2023_37023_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验